

BIBLIOTECA NACIONAL

FÍSICA ELEMENTAL

TOMO I.

MECÁNICA - ACÚSTICA - CALOR

por

JOSÉ S. FERNÁNDEZ

Profesor: adjunto a cargo de trabajos prácticos de física en la Facultad de Ciencias Exactas de Buenos Aires; suplente de física general en la Facultad de Ciencias Físico-Matemáticas de La Plata.

Profesor de física en la Escuela Normal Nº 1 de Profesoras y de matenaticas en el Colegio Nacional Mariano Moreno, de Buenos Aires.

ERNESTO E. GALLONI

Profesor adjunto a cargo de trabajos prácticos de física en la Facultad de Ciencias Exactas de Buenos Aires. Profesor de física en la Escuela Superior Técnica y en la Escuela Naval Militar.

Ex profesor de física en el Colegio Nacional de Adrogué.

Para uso de Escuelas y Colegios de enseñanza media

SEGUNDA EDICIÓN

BUENOS AIRES
EDITORIAL KAPELUSZ Y CÍA.
PIEDRAS 126

ANDBAWAEZEBOZBIB BIBEOREEJAWAEDNAT A MARÍA AMANDA

A NÉLIDA

PRÓLOGO

Hace ya dos décadas, se realizó en Estados Unidos una investigación, en que intervinieron todos los directores de Liceos, acerca de cuál era la materia cuya enseñanza presentaba mayores dificultades; y este singular honor correspondió a la Física.

Desde entonces, aquellas dificultades han aumentado, porque su campo se ha extendido y ha sido arado más profundamente. Un buen texto, es por ello, auxiliar poco menos que indispensable de todo maes

tro de esta ciencia.

Los ingenieros Fernández y Galloni han realizado, en tal sentido, una labor útil redactando un texto de física cuya difusión redundará en beneficio de nuestra enseñanza secundaria. Los temas han sido cuidadosamente seleccionados y correctamente expuestos; el lenguaje es claro, conciso y noble, como debiera serlo siempre el de la ciencia; la presentación es agradable y predispone al estudio.

No es frecuente que el profesor de una materia se decida a sustituir el texto que le es habitual después de varios años de enseñanza. Pero aún en tal caso, quisiéramos que prestara alguna atención a este nuevo libro, donde, sin duda, encontrará sugestiones que le serán útiles; y acaso aquélla decisión no fuera después tan esquiva. Si ella se produjese, yo recogería un poco del agradecimiento de sus alumnos.

TEÓFILO ISNARDI.

PRÓLOGO DE LOS AUTORES

De todos los ciclos de enseñanza, el medio es quizá el que plantea más dificultades al maestro.

Su función formativa hace que en él tenga fundamental importancia el estudio de las ciencias desde un punto de vista conceptual.

Las ciencias progresan rápidamente y el profesor debe tener espe-

cial cuidado en informar a sus alumnos sobre ese aspecto.

Pero en los planes de enseñanza media sólo puede tener cabida la parte de la ciencia suficientemente elaborada como para constituir la "ciencia clásica", eliminando todo lo que sea "teoría de último momento", pues de lo contrario se corre el riesgo de impartir conocimientos que a la vuelta de unos años han dejado de ser exactos, con el perjuicio que ello significa para el egresado que se dedica a otras disciplinas.

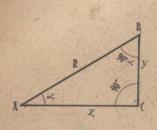
El texto de enseñanza no debe, por otra parte, ser un modelo de cuestionario con respuestas, en que con cuatro palabras se contesta aparentemente a todas las preguntas del programa oficial de la materia, por dos razones: porque no es eso lo que piden los programas, ni es esa la función de la enseñanza. Debe ser un elemento de estudio y de consulta. que además despierte una sana curiosidad y afán de profundizar los conocimientos.

Por esas razones hemos puesto nuestro empeño en escribir una obra que siendo útil al alumno para preparar la materia, lo invite a la reflexión y le aclare las dudas que se le presenten, un poco más allá de lo que exige la preparación de la lección diaria.

Hemos tratado de no sacrificar el rigor conceptual en nombre de una sencillez que generalmente resulta más aparente que real y agregamos algunos capitulos que no figuran en los programas, para completar así el cuadro del conocimiento de la física elemental.

Para guiar al estudiante en la selección de los temas, en los capítulos generales figuran con letra más pequeña aquellos puntos cuya

lectura no es esencial.


Finalmente, cumplimos con un deber de conciencia expresando nuestro reconocimiento a quienes debemos la realización de este libro: por una parte a todos los que fueron nuestros maestros y por otra, a nuestros alumnos y colegas, en cuyo trato diario encontramos los motivos de discusión y reflexión que poco a poco van aclarando y puliendo nuestros conocimientos de la materia...

ALFABETO GRIEGO

Mayúscula	Minúscula	Nombre	Equivalencia
A	α	alfa	a
В	β	beta	b
P	Y	gamma	g
Δ	X 8	delta	g d
E	3	épsilon	e
Z	5	dseta	ds
H	η	eta	e
Θ	9	theta	Z
I		iota	z i
K	×	cappa	k
Λ	λ	lambda	1
M	μ	mu	m
N	v	nu	n
E	8	xi	x
0	0	omicron	0
П	π	pi	p
P	Q	rho	r
Σ	σς	sigma	S
T	τ	tau	t
Y	υ	ypsilon	ü
Φ	φ	fi	f
X	X	ji	j
Ψ	ψ	psi	ns
Ω	w	omega	0

FUNCIONES TRIGONOMETRICAS

(Seno, coseno, tangente y cotangente)

sen.
$$\alpha = -\frac{y}{R} = \cos$$
. (90° $-\alpha$)
$$\cos \alpha = -\frac{x}{R} = \sin$$
. (90° $-\alpha$)

tang.
$$\alpha = \frac{y}{x} = \cot g$$
. (90° – α)

cotg.
$$\alpha = \frac{x}{y} = \text{tang.} (90^{\circ} - \alpha)$$

TABLA I

Valores de las funciones trigonométricas de grado en grado

	Sen.	Tang.	Cotg.	Cos.	Frai
0° 1 2 3 4	0,000 0,017 0,035 0,052 0,070	0,000 0,017 0,035 0,052 0,070	57,290 28,636 19,081 14,301	1,000 1,000 0,999 0,999 0,998	90° 89 88 87 86
5	0,087	0,087	11,430	0,996	85
6	0,105	0,105	9,514	0,995	84
7	0,122	0,123	8,144	0,993	83
8	0,139	0,141	7,115	0,990	82
9	0,156	0,158	6,314	0,988	81
10	0,174	0,176	5,671	0,985	80
11	0,191	0,194	5,145	0,982	79
12	0,208	0,213	4,705	0,978	78
13	0,225	0,231	4,331	0,974	77
14	0,242	0,249	4,011	0,970	76
15	0,259	0,268	3,732	0,966	75
16	0,276	0,287	3,487	0,961	74
17	0,292	0,306	3,271	0,956	73
18	0,309	0,325	3,078	0,951	72
19	0,326	0,344	2,904	0,946	71
20	0,342	0,364	2,747	0,940	70
21	0,358	0,384	2,605	0,934	69
22	0,375	0,404	2,475	0,927	68
23	0,391	0,424	2,356	0,921	67
24	0,407	0,445	2,246	0,914	66
	Cos.	Cotg.	Tang.	Sen.	N.

r						
ı	1.32	Sen.	Tang.	Cotg.	Cos.	
ı	25°	0,423	0,466	2,145	0,906	65°
ı	26	0,438	0,488	2,050	0,899	64
ı	27	0,454	0,510	1,963	0,891	63
ı	28	0,469	0,532	1,881	0,883	62
ı	29	0,485	0,554	1,804	0,875	61
١	30	0,500	0,577	1,732	0,866	60
ı	31	0,515	0,601	1,664	0,857	59
ı	32	0,530	0,625	1,600	0,848	58
ı	33	0,545	0,649	1,540	0,839	57
ı	34	0,559	0,675	1,483	0,829	56
ı	35	0,574	0,700	1,428	0,819	55
ı	36	0,588	0,727	1,376	0,809	54
۱	37	0,602	0,754	1,327	0,799	53
ı	38	0,616	0,781	1,280	0,788	52
۱	39	0,629	0,810	1,235	0,777	51
ı	40	0,643	0,839	1,192	0,766	50
1	41	0,656	0,869	1,150	0,755	49
	42	0,669	0,900	1,111	0,743	48
I	43	0,682	0,933	1,072	0,731	47
1	44	0,695	0,966	1,036	0,719	46
1	45	0,707	1,000	1,000	0,707	45
1		Cos.	Cotg.	Tang.	Sen.	

INTRODUCCIÓN

§ 1.—Cuerpo - Espacio - Tiempo.—El contacto con el mundo que nos rodea (por intermedio de nuestros sentidos), la facultad que poseemos de desplazarnos (cambiar de lugar) y las modificaciones que se verifican a nuestro alrededor, crean en nuestro espíritu las nociones de espacio y tiempo.

Con estos conceptos decimos: los cuerpos están formados

por materia, que ocupa porciones limitadas del espacio.

En realidad, el proceso mental es el siguiente: el contacto con nuestros sentidos (contacto en su acepción más amplia, directo o indirecto: táctil, visual, etc.) nos conduce a la noción de cuerpo. Luego, decimos: todos los cuerpos están formados por algo que adquiere muy diversas formas y características, pero que en conjunto llamamos materia, y, finalmente, decimos: todos los cuerpos o toda la materia, están distribuídos en el espacio, que medimos y caracterizamos por la materia que en él está colocada.

§ 2.—Fenómenos.—A todo cambio que se verifica en el mundo que nos rodea lo lla ma mos fenómeno. La caída de un cuerpo, la combustión de un fósforo, el latir del corazón, constituyen fenómenos. Se suelen hacer clasificaciones, más o menos arbitrarias, de los fenómenos en: biológicos, químicos, físicos, etc., aunque no es posible fijar criterios rigurosos que permitan clasificaciones estrictas y excluyentes. Así, por ejemplo: en el desarrollo de la vida de los organismos animados se produce un conjunto de fenómenos cuyo estudio incluyen las ciencias biológicas, pero muchos de los cuales figuran también en el cuadro correspondiente a las ciencias del mundo inanimado (fenómenos químicos, físicos, etc.).

Entre estas últimas figuran la física y la química. Aquí es donde resulta más difícil llegar a definiciones estrictas, ya que existe un grupo de fenómenos cuyo estudio cuadra dentro del campo de ambas ciencias (por ejemplo, el estudio de la estructura de la materia), y otros en que cada una de ellas estudia un aspecto particular. Si frotamos un fósforo sobre una superficie rugosa, se produce calor por el frotamiento (fenómeno físico) y con ello llega, a iniciarse la combustión, o sea

una reacción en que intervienen la materia de que está hecho el fósforo y la atmósfera que lo rodea (fenómeno químico).

De un modo grosero, puede admitirse la definición clásica según la cual son fenómenos químicos aquellos en que se modifica la constitución de los cuerpos que intervienen y fenómenos físicos aquellos en que no se modifica; dejando aclarado que no es una definición excluyente.

El estudio de ambas ciencias proporcionará el mejor crite-

rio para diferenciar ambos tipos de fenómenos.

§ 3.—Objeto de la Física. Leyes.—Diremos, pues, que la física se propone el estudio de los fenómenos físicos y la determinación de las leyes que los rigen. Entendemos por leyes, las relaciones cuantitativas que vinculan los distintos fenómenos.

Encontraremos, por ejemplo: las leyes de la caída de los cuerpos, o relaciones entre los caminos recorridos por un cuerpo que cae y los intervalos de tiempo transcurridos; leyes de la dilatación, o sea relaciones entre las variaciones de volumen que experimentan los cuerpos y las variaciones de temperatura correspondientes; etc.

Ciertas leyes fundamentales, que no admiten demostración en base a otras más simples y sólo se justifican por la comprobación de sus consecuencias, se denominan principios (El principio de masa, el de conservación de la energía, etc.).

El conjunto de leyes relativas a fenómenos de igual naturaleza conduce a la teoría (serie o hilera), o sea el conjunto de leyes, suposiciones y explicaciones que constituyen un único cuerpo de doctrina aplicable a dicho grupo de fenómenos. Por ejemplo: teoría de la gravitación, teoría electromagnética.

El lenguaje de la física es la matemática, con cuyo auxilio se da a las leyes y teorías expresión simple y concreta, permitiendo calcular y prever resultados, objeto de la ciencia en último análisis. Las teorías meramente descriptivas no tienen cabida dentro de la física, ya que sólo las leyes cuantitativas son útiles a su finalidad. Al mismo tiempo, cabe la observación opuesta: las expresiones matemáticas de las leyes de la física describen fenómenos, de modo que por encima de su valor intrínseco como fórmulas matemáticas, está su significado físico.

§ 4.—Método de la Física.—Siendo una ciencia de la naturaleza, la física ha de basarse en la observación y la experimentación. El principio básico sin el cual pierde sentido toda ciencia natural es el principio de causalidad: "todo fenómeno se repite íntegramente en todas sus fases si se repiten exactamente las condiciones iniciales".

Observado, pues, un fenómeno, se determina la influencia

de cada uno de los factores que lo perturban (leyes que lo

rigen).

Esto lleva de inmediato a la explicación o formulación de una hipótesis explicativa. Para confirmar o desechar la hipótesis se realiza la experimentación, que consiste en provocar la repetición del fenómeno, variar las circunstancias que lo acompañan y efectuar nuevas y meticulosas observaciones.

Ŝi la experimentación confirma la hipótesis, se acepta y

se generaliza el resultado obtenido.

Observación, hipótesis, experimentación y generalización (inducción), constituyen las fases del método de la física, por el que se llegan a establecer las leyes y teorías de los fenómenos.

Ejemplo de aplicación del método: Observando el hecho de que los cuerpos abandonados a sí mismos caen hacia la superficie terrestre siguiendo el camino más corto (la perpendicular a la horizontal), se formuló la hipótesis explicativa diciendo:

"Los cuerpos caen porque la tierra ejerce sobre ellos una

fuerza de atracción".

Esta hipótesis fué sometida a la experimentación: Galileo dejó caer cuerpos diversos desde la célebre torre de Pisa, observando los tiempos de caída y la influencia de la forma; más tarde, con el tubo de Newton se eliminó la acción perturbadora del aire.

Establecidos por este último los principios fundamentales de la mecánica, se comparó el efecto de esa supuesta atracción con el de otras fuerzas, y así se estableció la ley de acuerdo con la cual debía producirse la caída, de ser exacta la hipótesis de la existencia de esa fuerza de atracción. La experimentación comprobó la ley, confirmando así la hipótesis.

Fig. 1.—Gráfico que vincula los valores de la presión y el volumen en una masa de gas a temperatura constante.

En el estudio y determinación de muchas leyes se suele recurrir a las representaciones gráficas, que tienen la ventaja de dar una imagen de conjunto de la marcha del fenómeno o facilitar el hallazgo de la expresión matemática de la ley.

Un buen gráfico indicará rápidamente si se trata de una ley lineal (representable por una ecuación de primer grado), o de una ley cuadrática (2º grado), o cualquier otro tipo de ley.

La figura 1 representa la variación de volumen experimentada por una masa de gas, comprimida a temperatura constante. Corresponde a la ley:

p v = constante. (Ley de Boyle Mariotte)

La curva es una hipérbola y da idea inmediata de la marcha del fenómeno.

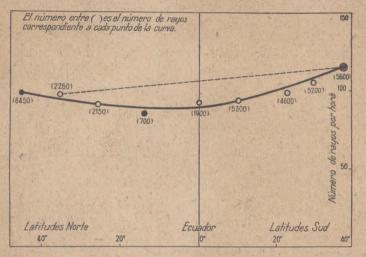


Fig. 2.—Gráfico que da la variación de la radiación cósmica con la latitud.

La fig. 2 es una representación gráfica de los resultados de las mediciones que han permitido comprobar que la radiación cósmica (radiación ultrapenetrante de origen desconocido, actualmente en estudio), varía en intensidad con la latitud. Este resultado permite fundamentar la hipótesis de que dicha radiación está constituída por partículas electrizadas.

§ 5.—Moléculas y átomos.—La materia es divisible; un sólido puede reducirse a polvo impalpable, cuyas partículas sólo sean visibles al microscopio.

Un gramo de fucsina basta para colorear de rojo mil litros

de agua.

Para obtener cien gramos de esencia se necesitan muchos kilogramos de flores, pero basta una sola flor para perfumar una habitación. Parecería, pues, que la posibilidad de subdivisión se puede extender indefinidamente.

Sin embargo, los resultados de la física y la química llevan a admitir que los compuestos químicos no pueden subdividirse más allá de ciertas partículas elementales, llamadas moléculas, para que conserven sus propiedades. A su vez, las moléculas son agrupaciones de partículas elementales de otros cuerpos simples, las que se denominan átomos.

La palabra átomo significa "indivisible", pero debe entenderse actualmente que son aquellas partículas constitutivas de los cuerpos simples, que no pueden subdividirse sin que pier-

dan las propiedades características.

Así, por ejemplo: el agua es un compuesto formado por moléculas. Cada molécula de agua está formada por la agrupación de dos átomos de hidrógeno y uno de oxígeno, que son

cuerpos simples.

Según las teorías modernas sobre la constitución de la materia, los átomos de todos los cuerpos están constituídos por una agrupación de cargas eléctricas del siguiente tipo: un núcleo central, cuya carga eléctrica es positiva, y a su alrededor un grupo de partículas llamadas electrones, cuya carga eléctrica es negativa, y que giran alrededor del núcleo como los planetas alrededor del sol. Cada sustancia está caracterizada por un número bien determinado de estos electrones. El átomo más sencillo es el de hidrógeno, cuyo núcleo central posee una

carga eléctrica positiva y a su alrededor un electrón gira en

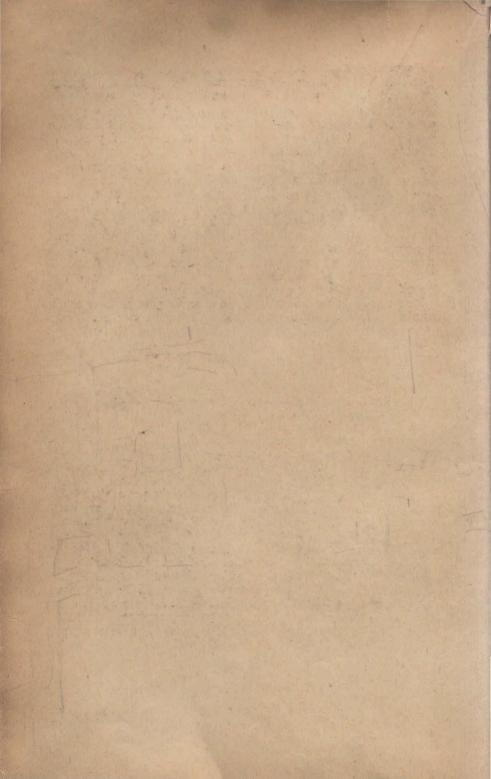
su órbita.

Las investigaciones más recientes están encaminadas a determinar la estructura de ese núcleo central, que parece estar formado por la agrupación de otras partículas elementales.

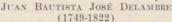


Fig. 3.—Modelo atómico del hidrógeno según Rutherford.

Si bien estas partículas no pueden observarse directamente, su existencia parece probada casi definitivamente por un cúmulo grande de experiencias y


se ha llegado a calcular sus dimensiones.


10 Millones de sitomos


Fig. 4.—Diez millones de atomos colocados en fila ocuparian un milimetro.

El átomo de hidrógeno ocupa una esfera cuyo diámetro está contenido diez millones de veces en un milímetro. Es decir, que un glóbulo rojo de la sangre, cuya dimensión es aproximadamente de siete milésimas de milímetro, posee un diámetro setenta mil veces

mayor que el del átomo de hidrógeno.



JUAN BAUTISTA JOSÉ DELAMBRE PEDRO FRANCISCO ANDRÉS MECHAIN (1744-1804)

Astrónomos y matemáticos franceses a cuyo cargo estuvo la medi-ción del arco de meridiano comprendido entre Dunkerque y Barcelona, destinada a fijar la unidad de longitud, en base a las dimensiones de la tierra.

METRO PATRÓN

Metro patrón guardado en los archivos del "Bureau International de Poids et Mesures" en et Pabellón Brèteuil, ubicado en el parque de Saint Cloud, en la ciudad de Sèvres.

Detrás del metro patrón se ven las dos partes de su envoltura y el estuche (Nº 26) en que se lo coloca.

BIBLIOTECA LAUTONAL DE MAESTROS

CAPÍTULO I

MAGNITUDES Y MEDICIONES

§ 6.—Magnitudes escalares y vectoriales.—Hemos dicho que el objeto de la física es establecer leyes, es decir, relaciones cuantitativas entre los fenómenos del mundo físico.

Para ello es necesario medir, y medir significa, en esencia, establecer coincidencias. Cuando decimos que un segmento tie-

ne tal longitud queremos significar que, si uno de sus extremos coincide con la división cero de una regla graduada, el otro coincide con tal división; y si decimos que un tren ha tardado

Fig. 5.—Longitud medida por coincidencias de los extremos con las divisiones de una regla.

tres horas en recorrer un determinado camino, queremos decir que comparando con las posiciones de las agujas de un re-



Fig. 6.—La duración del viaje se determina observando las posiciones de las agujas de un reloj.

loj los instantes de la partida y la llegada, encontramos una diferencia correspondiente a tres vueltas del minutero.

Son objeto de medida todas las magnitudes. Llama-

mos así a ciertos entes abstractos para los cuales se pueden definir la igualdad

y la suma (ej.: volumen, longitud, peso, etc.).

Todas las magnitudes son, pues, medibles, es decir, admiten una comparación con la magnitud unidad y el establecimiento de un número que indique cuantas veces la magnitud unidad está contenida en la magnitud dada. Podemos saber las veces que la longitud de nuestro lápiz tomada como unidad, está contenida en la longitud de nuestro escritorio, pero no podemos saber cuántas veces la sensación luminosa que percibimos mirando un fósforo encendido, está contenida en la que percibimos mirando una lámpara incandescente. Por eso decimos que son magnitudes los entes abstractos entre los cuales se puede establecer la *igualdad* y la *suma*. Con ello podremos fijar la unidad, tomar varias unidades iguales y sumarlas hasta obtener la magnitud dada.

Así, por ejemplo: podemos tomar dos volúmenes iguales (quiere decir esto: dos cuerpos de igual volumen) y podemos tener otro cuerpo cuyo volumen sea igual al de aquellos dos reunidos (suma); diremos entonces que el volumen es una mag-

nitud.

En el conjunto de las magnitudes de la física que encontraremos en nuestro estudio, cabe todavía la posibilidad de otra clasificación: algunas de ellas quedan determinadas por un número y su unidad correspondiente (longitudes, volúmenes). Se las llama magnitudes escalares, y al representarlas con números se opera con ellas de acuerdo con las reglas del álgebra.

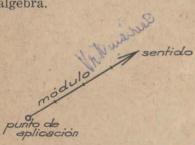


Fig. 7.—Representación gráfica de una magnitud vectorial.

3) Cookmos decit aus 10m + 20 m

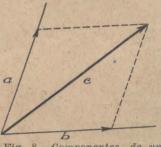


Fig. 8.—Componentes de un vector.

Otras, llamadas magnitudes vectoriales, se caracterizan por un número y su unidad, pero además debe fijarse su dirección, sentido y punto de aplicación, sin los cuales no quedan perfectamente determinadas; se las representa por vectores. El valor numérico de la magnitud está representado en una cierta escala por la longitud del vector (fig. 7) y se denomina módulo del mismo.

Más aun: fijada la magnitud correspondiente a una dirección determinada, podemos hallar sus componentes en otras direcciones por una descomposición geométrica (fig. 8). Realizamos con ellas operaciones geométricas que constituyen el álgebra vectorial.

Son ejemplos de estas magnitudes las fuerzas, velocidades, intensidades luminosas, etc., que iremos estudiando pau-

latinamente.

§ 7.—El metro (m).—La unidad fundamental para la medida de longitudes es el metro. Exactamente se define como la longitud igual a la distancia, a cero grado de temperatura, de los ejes de los trazos 2 y 5 marcados sobre el prototipo internacional de platino iridiado (designado M y marcado nº 6), depositado en la Oficina Internacional de pesas y medidas, en

S é v r e s (localidad próxima a París).

Cuando la comisión dirigida por los matemáticos Delambre y Mechain, cumpliendo la ley de la Convención del 7 de abril de 1795, fijó la unidad de longitud en base a la medida del arco de meridiano comprendido entre Dunkerque y Barcelona, se creyó haber establecido una unidad vinculada en forma sencilla a las dimensiones del globo terrestre. El metro sería un diez millonésimo del cuarto de meridiano. Sin embargo, medidas posteriores comprobaron que, en principio, tal definición carece de sentido, puesto que la tierra no es una esfera, ni aún un cuerpo de revolución. Según Bessel, su forma es aproxima-

damente un elipsoide cuyo cuarto de meridiano mide 10 000 856 metros.

En base a medidas posteriores se acepta como cifra más exacta el valor 10.001.868 metros. De acuerdo con esto, el metro patrón ha resultado aproximadamente 1/5 de milímetro más corto que el valor

que se le quiso dar.

Los trazos que lo definen se han marcado sobre una regla de 1,02 m de longitud, construída con aleación platino-iridio a los efectos de conocer sus variaciones de longitud por cambios de temperatura y cuya sección trasversal es la indicada en la fig. 9, con el objeto de disminuir los errores que podrían originar su flexionamiento.

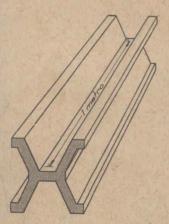


Fig. 9.—Forma del metro patrón; la sección está dibujada en tamaño natural.

Los trazos que determinan la longitud del metro patrón tienen un ancho de 6 a 8 milésimas de milímetro, lo cual introduce cierta indeterminación en la longitud que exactamente ha de tomarse como un metro.

Para salvar este inconveniente, se define actualmente al metro como una longitud igual a 1.553 164,13 veces la longitud de onda de una línea roja característica del espectro luminoso del cadmio.

§ 8.—Múltiplos y submúltiplos del metro.—Para medidas de mayores o menores longitudes se utilizan los múltiplos y submúltiplos del metro.

Son múltiplos:

Decámetro (Dm) Hectómetro (Hm) 100 m Kilómetro (Km) 1 000 m

Submúltiplos:

Decimetro (dm) = 0.1 mCentímetro (cm) = 0.01 mMilímetro (mm) = 0.001 mMicrón

 $(\mu) = 0,000\,001 \,\mathrm{m} = 0,001 \,\mathrm{mm}$ Angström $= 0.0001 \mu = 10^{-8} \text{ cm}$

En astronomía, donde las distancias a medir son extraordinariamente grandes, se utilizan:

Unidad astronómica (distancia tierra-sol) = 1,4945 × 108 Km

Año luz = 6,3310 × 104 unidades astronómicas = camino recorrido por la luz en un año.

Parsec = distancia desde la cual se ve el radio de la órbita terrestre bajo un ángulo de 1 segundo (paralaje = 1") = 3,258 año luz.

§ 9.—Unidades derivadas de superficie v volumen.

1.—La unidad de superficie es el metro cuadrado, o sea un área igual a la de un cuadrado cuvo lado mide 1 m. Emplearemos el símbolo m^2 .

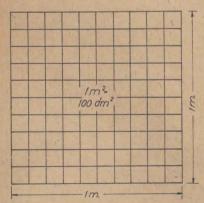


Fig. 10.—Unidad de superficie: m².

Sus múltiplos son:

 $Dm^2 =$ 100 m² $Hm^2 =$ 10 000 m² Km² = 1 000 000 m²

y los submúltiplos:

dm² 0.01 m² = cm² = 0.0001 m² 0.000001 m² $mm^2 =$

En la práctica se emplean, especialmente al estimar superficies de campos, la hectárea, el área y la centiárea, que son, respectivamente, el hectómetro, decámetro y el metro cuadrados. El Km^2 resulta entonces igual a cien hectáreas.

 $(1 \text{ Km}^2 = 100 \text{ Ha. } 00 \text{ a. } 00 \text{ ca.})$

2. — La unidad de volumen es el metro cúbico (m³) o sea un volumen igual al de un cubo cuya arista es de 1 metro de longitud.

Los múltiplos, poco utilizados, se deducen como en el caso anterior.

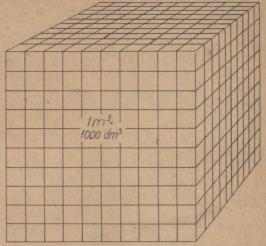


Fig. 11.-Unidad de volumen: m3.

Los submúltiplos son:

 $1 \text{ dm}^3 = 0.001 \text{ m}^3 = 10^{-3} \text{ m}^3$

 $1 \text{ cm}^3 = 0,000 \ 001 \ \text{m}^3 = 10^{-6} \ \text{m}^3$

 $1 \text{ mm}^3 = 0,000\ 000\ 001\ \text{m}^3 = 10^{-9}\ \text{m}^3$

3.—En la República Argentina se adoptó el sistema métrico decimal por ley del 10 de setiembre de 1863, complementada por la del 13 de julio de 1877.

El empleo obligatorio de este sistema se aplicó en las reparticiones públicas a partir del 1° de enero de 1879, y, en general, en todo el país desde el 1° de enero de 1887.

TABLA II
UNIDADES ANTIGUAS Y SUS EQUIVALENCIAS

Longitud		Superficie	Volumen		
legua	=	5 196	m	legua cuadrada = 2.699 Ha, 84 a, 16 ca	
cuadra	=	129,90	m	cuadra cuadrada = 1 Ha, 68 a, 74,01 ca	
vara	=	0,866	m	vara cuadrada = 0,749956 m ²	
pie	=	0,288	m	pie cuadrado = 0,08332844 m ²	pie cúbico = 0,024054144 m ³
pulgada	=	0,024	m	pulgada cuadrada = 0,00057867 m² =	pulgada cúbica = 13,920 cm ³
línea	=	0,002	m	5,7867 cm ²	

Actualmente, en el comercio suelen emplearse medidas inglesas, algunas de igual nombre y valor algo distinto que estas medidas antiguas.

TABLA III
MEDIDAS INGLESAS

Longitud		Superficie	Volumen	
pulgada	= 0,0254 m	pulgada cua- drada (squa- re inch) = 6,4516 cm ²	pulga- da cú- bica = 0,0164 dm ³	
1000	= 0,3048 m	pie cuadra-	pie cú- bico = 28,316 dm ³	
	= 0,9144 m = 1760 yardas = 1609,34 m	acre $= 4046,7 \text{ m}^2$	galón = 4,54596 lit. (1)	
milla ma- rina (nau- tical mi-			pinta = 0,56824 lit.	
le)	= 1855 m (2)			

§ 10.—Unidades de ángulo. - 1.—Los ángulos pueden medirse en *grados sexagesimales*, cada uno de los cuales es la 90 ava parte de un cuadrante o ángulo recto.

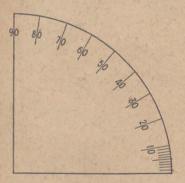


Fig. 12.—Cuadrante dividido en grados sexagesimales.

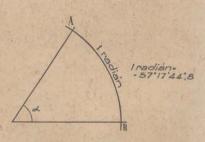


Fig. 13.—Angulo de un radián. Arco AB = radio.

Cada grado se divide en 60 minutos y cada minuto en 60 segundos. La unidad grado se abrevia con un cero como exponente, los minutos con una coma y los segundos con dos comas. Así por ejemplo: 36° 48' 26" se lee: 36 grados 48 minutos 26 segundos.

^{(1) 1} litro = 1,000027 dm3.

⁽²⁾ La longitud media del minuto sexagesimal de latitud terrestre adoptada por el "Bureau des Longitudes" en 1906, es 1852 metros (milla marina francesa). En la Argentina se usa para las cartas marinas la milla inglesa de 1855 m.

Otra unidad que utilizaremos más frecuentemente en física para la medida de los ángulos es el *radián*, que es el ángulo al cual corresponde un arco de longitud igual al radio (figura 13).

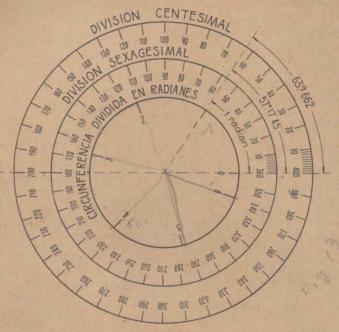
La medida de un ángulo en radianes será, pues, el cociente

$$\alpha \text{ (radianes)} = \frac{\text{longitud arco}}{\text{longitud radio}}$$
[1]

Siendo el cociente de dos longitudes, esta unidad es un número abstracto.

2.—Cuando se estableció el sistema métrico decimal, se fijó como unidad para la medida de ángulos el grado centesimal, que es la centésima parte de un cuadrante, el cual se subdivide en 100 minutos de grado centesimal y éste en 100 segundos. En este sistema, siendo la longitud del cuadrante de meridiano de 10 000 000 de metros, correspondería cada grado a 100 km y cada minuto a 1 km. De este modo, resultaría sencillo calcular la diferencia de latitud entre dos lugares de un mismo meridiano dada su distancia en metros, y recíprocamente. Sin embargo, no ha tenido aceptación en ninguno de los países que adoptaron el sistema métrico decimal y hoy resulta difícil encontrar tablas correspondientes a esta unidad. Es casi exclusivo y universal el uso del radián y el grado sexagesimal.

3. - Equivalencias:


1 circunferencia = 360° = 2 π radianes

1 radián =
$$\frac{360^{\circ}}{2 \pi}$$
 = 57°17'44",8 = 206.264,8"

4.—Cuando se trata de ángulos muy pequeños (hasta 5º), pueden considerarse iguales el seno, la tangente y el ángulo en radianes. El coseno es prácticamente igual a la unidad. (Tabla IV).

TABLA IV

a en grados	α en radianes	sen. a	tg. a	cos. a
0.6	0	0	0	1
0030	0.00873	0,00873	0,00873	0,99996
10	0,01745	0,01745	0,01746	0,99985
20	0,03491	0,03490	0,03492	0,99939
3?	0,05236	0,05234	0,05241	0,99863
40	0,06981	0,06976	0,06993	0,99756
5?	0,08727	0.08716	0,08749	0,99619

Comparación de las unidades de medida de ángulos.

§ 10 a).—Angulo sólido.—Se llama ángulo sólido al espacio delimitado por una superficie cónica.

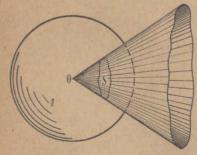


Fig. 14.—Angulo sólido de vértice O,

Se mide el ángulo sólido por la relación entre el área de la superficie determinada por el cono sobre una esfera cualquiera de centro en el vértice O y el cuadrado del radio de la esfera, (figura 15).

$$\Omega = \frac{S}{\sqrt{R^2}}$$
 [2]

La unidad del ángulo sólido se tiene cuando $S = R^2$ y se denomina esterradián.

El ángulo sólido correspondiente a toda la esfera será, por tanto, $\Omega=4~\pi.$

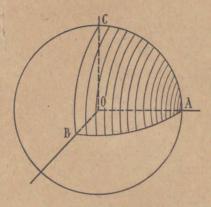


Fig. 15.—En el triedro trirrectángulo el ángulo sólido es $\frac{\pi}{2}$ esterradián.

Un triedro trirrectángulo (fig. 15) abarca un ángulo sólido:

$$\Omega_1 \,=\, \frac{S}{R^2} = \frac{1}{8} \,\, \frac{4\pi R^2}{R^2} = \, \frac{\pi}{2}$$

 \S 11.—Nonius o Vernier (¹).—La medida de longitudes se realiza con reglas graduadas. Hasta el medio milímetro se puede medir por lectura directa. Para longitudes menores, ni es fácil construir las divisiones de la regla ni es posible que el ojo pueda apreciarlas. Se utiliza entonces el nonius o vernier, que consiste en una pequeña reglilla que corre al lado de la regla graduada, en la cual N divisiones del vernier corresponden a n=N-1 de la regla.

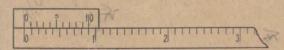


Fig. 16.—Vernier rectilineo de aproximación 0,1.

Supongamos que se tiene una regla dividida en milímetros y que se ha construído un vernier en que sus 10 divisiones correspon-

den a 9 de la regla (9 mm). Cada división del vernier valdrá, por lo tanto, 9/10 mm (fig. 16).

⁽¹⁾ Nonius, nonio o núñez nombre asignado en homenaje a Pedro Núñez Salaciense, matemático portugués (1492-1577), cuyo apellido en latín es Nonius.

Vernier Pedro, Geómetra francés a quien se atribuye su invención (1580-1637).

La menor longitud que se pueda apreciar será la diferencia entre ambas divisiones, o sea 1/10 mm. Esta es la aproximación.

Para efectuar medidas se coloca un extremo del objeto a medir en el cero de la regla y se hace coincidir con el otro extremo el cero del vernier. Se lee en la regla hasta la divi-

Fig. 17.—Medida con el Vernier. Lectura: 12.7.

sión más próxima al cero del vernier y el segmento restante se calcula multiplicando el número de orden de la división del vernier

que coincide con una de la regla, por la aproximación. En el caso de la figura 17 se tiene:

lectura en la regla: 12 mm;

lectura en el vernier (división que coincide): 7 longitud total: $12 + 7 \times 0.1 = 12.7$ mm.

Lo observación de la figura 18 permite comprender el por qué de este cálculo del segmento restante.

En efecto: coincidiendo la división Nº 7 del vernier con una cualquiera (la 19) de la regla, la división Nº 6 queda corrida de 0,1 mm con respecto a la más próxima (la 18) de la regla.

La Nº 5 quedará corrida de 2 x 0,1 mm con respecto a la 17 de la re-

gla y así sucesivamente.

La división N° 0, queda corrida de 7 x 0,1 con respecto a la división 12 de la regla. En general coincidiendo la división K y siendo A la aproximación, el segmento restante será: K, A.

Fig. 18.—Vernier rectilineo aproximación 0,01.

$$(d = \frac{1}{2}; N = 50)$$

El ejemplo que hemos dado, de un vernier con aproximación 1/10 mm, no es más que un caso particular. En la práctica es corriente el uso de otros, cuyas aproximaciones son:

 $\frac{1}{20}$, $\frac{1}{50}$, $\frac{1}{100}$ mm y que se basan en el mismo principio constructivo.

Si llamamos d a la división más pequeña de la regla y v a la del vernier, la menor longitud que se pueda apreciar (aproximación) será:

$$A = d - v$$

Teniendo en cuenta que N divisiones de longitud v corresponden a N-1 de longitud d, resulta:

$$N'v = (N-1)d$$

o sea:

$$N v = N d - d$$

de donde:

$$N d - N v = d$$

у:

$$d - v = \frac{d}{N}$$

luego:

$$A = \frac{d}{N}$$
 [3]

Es decir: la aproximación es igual al cociente de la longitud de la menor división de la regla por el número total de divisiones del vernier.

Fig. 19.—Aplicación del vernier. Compás de corredera o calibre para diámetros externos o internos. Graduado en mm y en pulgadas.

El método de lectura es el mismo indicado anteriormente cualquiera sea la aproximación del vernier.

§ 11 a).—Vernier circular.—Se lo emplea para medir ángulos y su construcción y uso son análogos a los del vernier rectilíneo.

La figura 20 muestra un vernier circular en el que la división menor

de la regla es d =
$$\frac{1}{2}$$
 = 30'.

El vernier está numerado de 0 a 30, pero el número total de divisiones es: N=60.

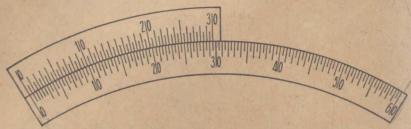


Fig. 20.-Vernier circular de aproximación 30".

En el caso de la figura 20 resulta la aproximación (fórmula [3]).

$$A = \frac{d}{N} = \frac{30}{60} = \frac{1}{2} = 30$$
"

En la figura 21 la lectura dada por la posición del cero del vernier es: 20°. La división del vernier que coincide (y que está marcada con una flecha), tiene número de orden 33.

La lectura es:

en la escala: 20°

división del vernier: 33

ángulo: 20° + 33 × 30" = 20° 16' 30"

Fig. 21.—Medida en el vernier circular: 20° 16' 30".

La numeración del vernier permite la lectura directa de los minutos y fracciones de 30".

A la división Nº 33 le corresponde la lectura 16,5 minutos en el vernier, o sea: 16' 30".

El vernier circular tiene gran aplicación práctica en goniómetros y teodolitos (ver figuras 22 y 23).

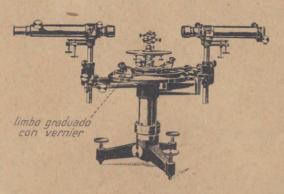


Fig. 22.—Goniómetro, aparato para medir ángulos, en el que se aplica un vernier circular.

Fig. 23.—Teodolito, utilizado en topografía y observaciones astronómicas para medir ángulos. Lleva dos circulos graduados, con vernier.

§ 12.—Tornillos micrométricos.—Palmer.— Se llama paso de un tornillo a la longitud que avanza o retrocede cuando da una vuelta completa.

Tornillo micrométrico es aquel
cuyo paso pequeño es perfectamente constante.
Su cabeza lleva un tambor
graduado que permite apreciar fracciones de vuelta y,
por lo tanto, longitudes iguales a esa misma fracción del
paso (fig. 24).

Si el paso es p y el tambor lleva N divisiones, la apreciación es:

$$A = \frac{p}{N}$$

Se aplica al palmer, esferómetro, máquina de dividir, etc.

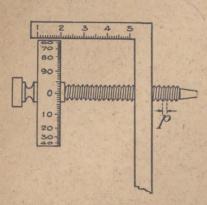


Fig. 24.—Tornillo micrométrico de apreciación 0.01; p=paso del tornillo.

Fig. 25.—Esferómetro. Aplicación del tornillo micrométrico para medir espesores y, en particular, flechas de casquetes esféricos, para calcular los radios.

El palmer (fig. 26) se emplea en la medida de espesores por la distancia de los extremos B y C entre los cuales se coloca el objeto a medir. Su aproximación suele ser de 1/100 de mm (p = 1 mm; N = 100 en la fig. 26). Los milí-

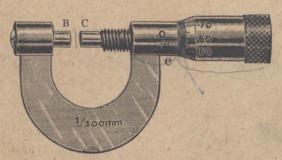


Fig. 26.—Palmer paramedir espesores. Lectura 4.60 mm.

metros o vueltas completas se leen en la escala e y las fracciones en el tambor graduado. En el caso de la figura la lectura es: 4,60 mm.

CAPÍTULO II

ESTÁTICA

§ 13.—Fuerzas - Gravedad - Peso.

De nuestra experiencia sensorial tenemos una noción intuitiva de fuerza. Sabemos que para sostener un cuerpo debe-

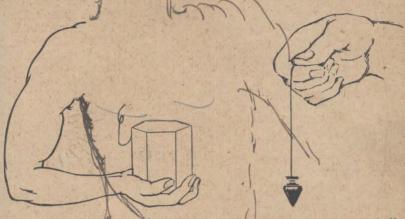


Fig. 27.—La pesa se sostiene por el esfuerzo museular.

Fig. 28.—La plomada indica la dirección de la vertical.

mos efectuar un esfuerzo muscular que llamamos fuerza y admitimos que esa fuerza tiene por objeto equilibrar la que

ejerce el cuerpo como consecuencia de la atracción terrestre. Esta atracción se llama fuerza de gravedad o peso.

Si el cuerpo está colgado de un hilo, éste toma una posición que llamamos vertical y nos determina la dirección de

Fig. 29.—El cuerpo ejerce una fuerza sobre la mesa, como la plomada sobre el soporte.

la fuerza de gravedad, que prácticamente coincide con la del radio terrestre.

El sentido de la fuerza es de arriba hacia abajo.

Por analogía, cuando observamos un cuerpo colgado o apoyado sobre otro decimos que ejerce una fuerza sobre él.

También cuando queremos desplazar un cuerpo aplicamos sobre él nuestro esfuerzo muscular (una fuerza), y cuando observamos que un cuerpo comienza a moverse por acción de

Fig. 30.—El esfuerzo muscular mueve el obstáculo; la fuerza de la locomotora arrastra los vagones.

otro decimos que el segundo ha ejercido una fuerza sobre el primero (fig. 30).

Esta acción (fuerza) puede no ser trasmitida por contacto directo; así, un imán ejerce una fuerza de atracción sobre un trozo de hierro separado de él, y la atracción de la tierra (peso) se manifiesta sin que los cuerpos estén en contacto con ella.

El concepto de fuerza, que no pretenderemos definir, aparece así como una extensión al mundo físico, de una noción puramente subjetiva.

§ 13 a).—Principio de acción y reacción.

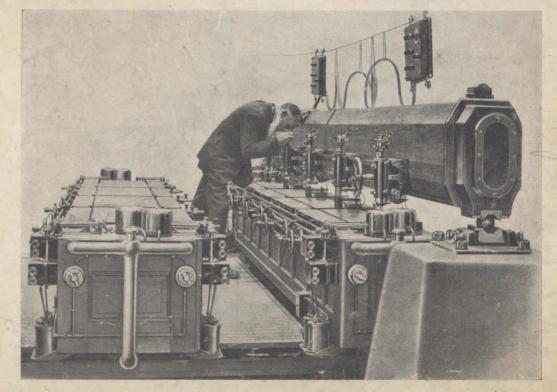
En todos los ejemplos anteriores: el del cuerpo que sostenemos levantado, el del que pende colgado de un hilo, el del que se encuentra apoyado sobre una mesa, debemos admitir que el apoyo o sostén ejerce una fuerza que equilibra al peso del cuerpo.

A la acción del peso corresponde una reacción igual y contraria.

En general, cuando un cuerpo ejerce una acción (fuerza) sobre otro, recibe una reacción igual y contraria. Este enunciado corresponde al principio de la igualdad de acción y reacción.

§ 14.—Unidades de peso.

Tomaremos como unidad para la medida de los pesos el **kilogramo patrón** (kgr) que es el peso normal (o sea, a 45° de latitud y al nivel del mar) del prototipo de platino-iridio depositado en la Ofici-


COMPARADOR DE REGLAS MÉTRICAS

Aparato moderno para preparación de reglas geodésicas de 4 m de longitud, construido por la "Sociedad Ginebrina de Instrumentos de Fisica".

Posee una regla patrón de "Invar" (aleación especial de acero y niquel) con divisiones que corresponden a la longitud de I metro a distintas temperaturas. La comparación se realiza con ayuda de microscopios micrométricos.

Por medio de termostatos se mantiene constante la temperatura.

En la Argentina existe un comparador de este tipo en el Instituto Geográfico Militar.

BIBLIOTECA NACIONAL DE MAESTROS na Internacional de Pesas y Medidas, en Sévres.

Es necesario definirlo con relación a lugar y altitud, pues el peso de los cuerpos varía con su ubicación sobre la tierra, como veremos más adelante.

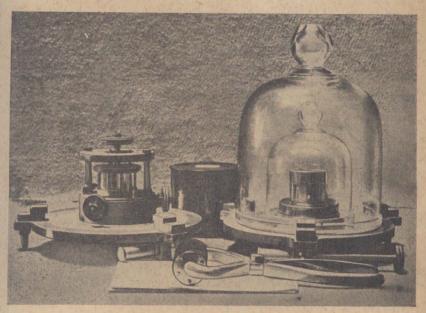


Fig. 31.—El Kilogramo patrón de los Archivos de Sévres, en sus envolturas. En la Argentina existe una copia desde 1939.

Como múltiplo se utiliza la tonelada (ton) = 1000 kgr y como submúltiplos: el gramo peso (gr) = 0,001 kgr y el miligramo peso (mgr) = 0,001 gr.

§ 15.—Peso específico.

Se llama peso específico a la relación entre el peso y el volumen de un cuerpo. Es decir, si P es el peso y V el volumen:

$$ho = rac{P}{V}$$

o sea, es el peso de la unidad de volumen.

Con las unidades que hemos definido resultará el peso específico expresado en $\frac{\text{kgr}}{\text{m}^3}$ o $\frac{\text{gr}}{\text{cm}^3}$ o $\frac{\text{ton}}{\text{m}^3}$

Se suele utilizar el peso específico relativo, que es el cociente del peso específico del cuerpo dividido por el de una sustancia que se toma como elemento de referencia.

Así, por ejemplo, se suele dar el peso específico con relación al agua a 4° de temperatura:

$$D = \frac{\rho}{\rho_a} = \frac{P/V}{P'/V} = \frac{P}{P'}$$
 [2]

que se puede definir como el cociente del peso P del cuerpo, por el peso P' de igual volumen V de agua a 4° de temperatura. Como se comprende, el peso específico relativo es un número abstracto. (Veremos más adelante que coincide con lo que se llama densidad relativa) y no depende de la latitud del lugar, como el peso específico.

§ 16.—Medida de las fuerzas - Dinamómetros.

Hemos definido las fuerzas por analogía con los pesos; para la medida de unos y otros utilizamos aparatos llamados dinamómetros, que se basan en las propiedades elásticas de ciertos materiales.

Sabemos que todos los cuerpos se deforman por la acción de fuerzas exteriores. Llamamos cuerpos elásticos a aquellos que, suprimido el esfuerzo exterior, recobran su forma primitiva. Dentro de ciertos límites, los metales son elásticos. Una vez establecida la ley de las deformaciones en función de las fuerzas, podemos, midiendo la deformación, medir la fuerza.

Así, por ejemplo: sea un resorte metálico, cuya longitud conocemos cuando está descargado. Si colgamos pesas en su extremo experimentará alargamientos y en la escala colocada frente al índice del extremo, podremos marcar el peso que co-

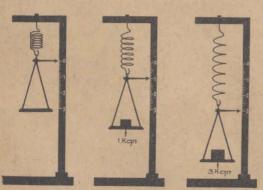


Fig. 32.—Colocando pesos conocidos se calibra el dinamómetro.

rresponde a cada posición del índice (fig. 32). Una vez hecha esta experiencia, que llamamos calibración, podemos realizar la experiencia opuesta: colocado un peso desconocido, medirlo por la posición del índice sobre la escala, es decir, por el alargamiento que produce al resorte.

Este es el principio en que se basan todos los dinamóme-

tros. El cuerpo elástico puede ser otro (varilla flexible en lugar del resorte), pero el fundamento es siempre el mismo.

Fig. 33.—Diversos modelos de dinamómetros.

Cualquier fuerza podrá medirse por la deformación producida al dinamómetro, como si se tratara de un peso. Esta medida se llama intensidad de la fuerza.

§ 17.—Representación gráfica de las fuerzas.

Hemos dicho que el peso es una fuerza de dirección vertical y cuyo sentido va hacia abajo. Toda otra fuerza estará

caracterizada por una dirección y un sentido, además de la intensidad.

Fig. 34.—Representación gráfica de una fuerza. Escala: 1 kgr. = 6 mm.

Siendo magnitudes vectoriales, las fuerzas se representarán por vectores. La dirección y sentido del vector indicarán dirección y sentido de la fuerza y la longitud o módulo del vector se tomará proporcional a la intensidad de la fuerza. Cada unidad de longitud representará una cierta cantidad de unidades de fuerza; ésta es la escala de la

representación. El origen del vector representa el punto de aplicación de la fuerza.

Ejemplo: Representar una fuerza horizontal, dirigida de izquierda a derecha del observador y cuya intensidad es de 80 kgr, en escala de 20 kgr = 1 cm.

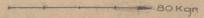


Fig. 35.—Representación gráfica de una fuerza horizontal de 80 kgr en escala de 20 kgr = 1 cm.

Se dibujará un segmento horizontal de 4 cm de longitud y con la flecha indicadora del sentido hacia la derecha.

§ 18.—Sistemas de fuerzas - Equilibrio.

Un conjunto de fuerzas aplicadas a un cuerpo constituye un sistema de fuerzas.

Fig. 36.—Dos fuerzas iguales y de sentido contrario aplicadas al mismo punto se equilibran.

Se llama **estátic**a al capítulo de la física que trata del equilibrio de los sistemas de fuerzas.

El problema más simple es el del equilibrio de dos fuerzas. Es evidente que dos fuerzas a plicadas a un mismo

punto se equilibran cuando son de igual intensidad, de la misma dirección y de sentido contrario.

En un cuerpo rígido (indeformable) dos fuerzas iguales y contrarias se equilibran siempre que tengan la misma recta

Fif. 37.—Equilibrio de dos fuerzas aplicadas en diferentes puntos del cuerpo rigido.

de acción (fig. 37). Es que en este caso (cuerpo rígido) toda fuerza puede trasladarse a lo largo de su recta de acción sin que se modifique su efecto; su punto de aplicación puede así elegirse arbitrariamente sobre esa recta. Llevando a coincidir los puntos de aplicación

de ambas fuerzas se reduce este caso al anterior.

§ 19.—Composición de fuerzas concurrentes - Regla del paralelogramo.

1.—Son fuerzas concurrentes aquellas cuyas rectas de acción pasan por un punto.

Cuando se tienen varias fuerzas concurrentes puede ocu-

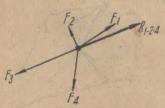


Fig. 38.—Si cuatro fuerzas se equilibran, cada una equilibra a la resultante de las otras tres.

rrir que estén en equilibrio aunque sus rectas de acción formen ángulos cualesquiera entre sí. En ese caso cada una de ellas es equilibrada por las demás. Estas pueden entonces sustituirse por una única fuerza, igual y contraria a la primera, que llamaremos su resultante. Si las fuerzas F_1 , F_2 , F_3 y F_4 están en equilibrio, decimos que cada una de ellas (la F_3 , por ejemplo) equilibra a la resultante de todas las demás, o sea, por lo que vimos anteriormen-

te, que la resultante de las fuerzas F_1 , F_2 , y F_4 es igual y opuesta a la fuerza F_3 .

Diremos, en general: Se llama resultante

(o suma) de un sistema de fuerzas, a una fuerza igual y de sentido contrario a la fuerza que es necesario

agregar al sistema para

equilibrarlo.

Con esta definición comprobamos experimentalmente que: dadas dos fuerzas concurrentes, F_1 y F_2 (fig. 39), su resultante R es igual a la fuerza representada por la diagonal del paralelogramo construído tomando por lados los vectores que representan a las fuerzas dadas. Es decir, que el sistema formado por F_1 , F_2 y — R está en equilibrio (1).

La comprobación puede realizarse con el aparato de Varignon (fig. 40),

que consiste en un disco con tres pequeñas poleas en el borde. Tres hilos fijos a un punto pasan por esas poleas, y en sus extremos libres se colocan pesos variables que permiten llevar la intersección de los hilos al centro del disco.

lelogramo.

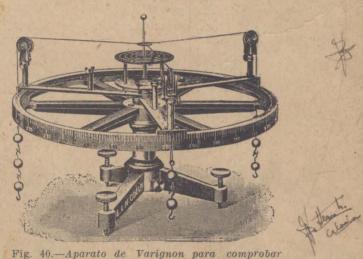


Fig. 40.—Aparato de Varignon para comprobar la regla del paralelogramo.

Conseguido el equilibrio, se determinan los pesos, que por las poleas se trasmiten directamente a los hilos, y se dibujan, colocando una hoja de papel debajo, (2) las direcciones concu-

 ⁽¹⁾ El módulo de R resulta así menor que la suma aritmética de los módulos de las componentes F₁ y F₂.
 (2) Pueden medirse los ángulos de las fuerzas en la escala del borde del aparato.

rrentes de los hilos. Representando, en una escala cualquiera, lo valores de las fuerzas en las direcciones de los hilos, se com probará que se cumple el principio del paralelogramo.

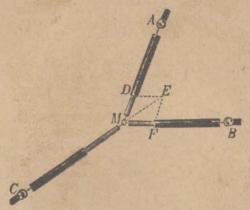


Fig. 41.—Comprobación de la regla del paralelogramo empleando dinamómetros.

Puede también efectuarse la comprobación empleando le dispositivos de las figs. 41 y 42, utilizando dinamómetros pesas y poleas.

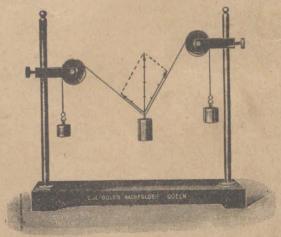


Fig. 42.—Comprobación de la regla del paralelogramo utilizando poleas.

2.-Resolución analítica.

Resuelto gráficamente el problema de hallar la resultante de fuerzas concurrentes, puede también hallarse analíticamente. Es fi

ver que la resultante es el tercer lado de un triángulo cuyos otros dos lados son las fuerzas dadas.

Aplicando un conocido teorema de trigonometría: "el cuadrado de un lado de un triángulo es igual a la suma de los cuadrados de los otros dos menos el doble producto de ellos por el coseno del ángulo comprendido" (teorema del coseno), resulta:

$$R^2 = f_1^2 + f_2^2 - 2f_1 f_2 \cos \beta$$

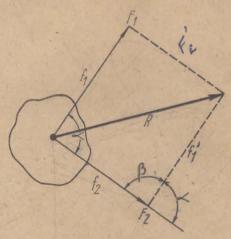


Fig. 43

Pero (fig. 43):

 $\beta = 180 - a$, en que a es el ángulo de las fuerzas.

Luego:
$$\cos \beta = -\cos \alpha$$

$$\chi$$
, finalmente: $R^2 = f_1^2 + f_2^2 + 2 f_1 f_2 \cos \alpha$

[3]

Si el ángulo α es recto se aplica directamente el teorema de Pitágoras:

 $R^{2} = f_{1}^{2} + f_{2}^{2}$

3.—Resultante de tres o más fuerzas concurrentes.

Si en lugar de dos son tres o más las fuerzas concurrentes que se trata de componer, el problema se resuelve por pasos sucesivos, hallando la resultante de dos de ellas, luego la de esta resultante con la siguiente, y así sucesivamente (fig. 44).

Si se tienen tres fuerzas no coplanares, la resultante es

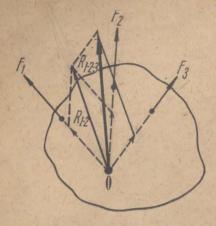


Fig. 44.—Resultante de tres fuerzas concurrentes coplanares, aplicadas en diferentes puntos de un cuerpo rigido.

la diagonal del paralelepípedo construído con los vectores como aristas (fig. 44).

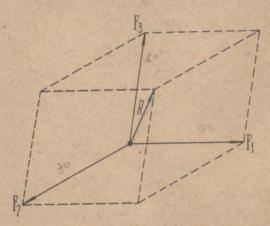


Fig. 45.—Composición de tres fuerzas concurrentes no coplanares.

4.—Triángulo y polígono de fuerzas.

De las figuras 46 y 47 se deduce que para hallar la resultante se aplica el criterio siguiente: se dibujan sucesivamente los vectores representativos tomando como origen de cada uno el extremo del anterior. El vector que resulta de unir el origen del primero con el extremo del último es el vector resultante del sistema.

Se ha formado un polígono llamado polígono de las fuerzas.

Si el polígono resulta cerrado, el sistema está en equilibrio por tener resultante nula.

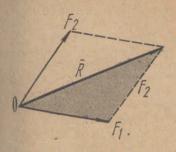


Fig. 46.—Las componentes y la resultante forman un triángulo.

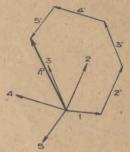


Fig. 47.—Poligono de las fuerzas.

§ 20.—Descomposición de fuerzas concurrentes.

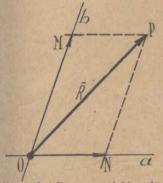


Fig. 48.—Descomposición de una fuerza en otras dos.

1.—Descomposición en dos fuerzas de direcciones dadas.

Es el problema inverso del anterior. Se da la resultante y las rectas de acción de las componentes y se trata de determinar sus intensidades.

Se resuelve trazando por el extremo P de la resultante (figura 48) rectas paralelas a las direcciones dadas *Oa y Ob; OM y ON* son los vectores que representan las componentes pedidas.

2.—Dada la resultante y una componente, hallar la otra (resta de vectores).

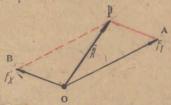


Fig. 49.—Dados R y F, hallar Fx

Si se da la resultante R y la fuerza F_1 , para hallar la fuerza F_2 , que, sumada a la anterior, da R, se traza el segmento AP, que une ambos extremos. El vector OB, igual y paralelo a AP, representa la fuerza buscada.

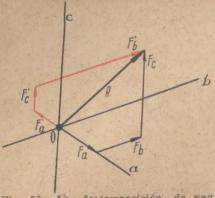


Fig. 50.—La descomposición de una fuerza en tres concurrentes coplanares, de direcciones dadas, tiene infinitas soluciones.

3.—Descomponer una fuerza en tres de direcciones dadas. Este problema tiene infinitas soluciones si las fuerzas son coplanares. Fijadas arbitrariamente las intensidades de dos de ellas siempre puede determinarse una tercera en la dirección pedida, en forma tal que constituya una solución del problema (fig. 50).

Si las direcciones son no coplanares se hallan las componentes trazando por el extremo de la resultante planos paralelos a los que determinan las direcciones dos a dos (fig. 51).

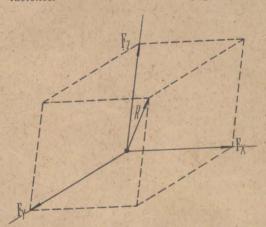


Fig. 51.—Descomposición de una fuerza en tres concurrentes no coplanares.

§ 21.—Composición de fuerzas paralelas.

1.—Fuerzas paralelas de igual sentido.

La resultante R de dos fuerzas F₁ y F₂, paralelas y del mismo sentido, cumple las siguientes condiciones:

- a) Es paralela y del mismo sentido que las componentes.
- b) Su intensidad es igual a la suma de las intensidades de las componentes:

c) El punto C, interior al segmento AB, lo divide en partes inversamente proporcionales a las intensidades de las fuerzas adyacentes (1).

$$\frac{AC}{BC} = \frac{F_2}{F_1}$$
 [4]

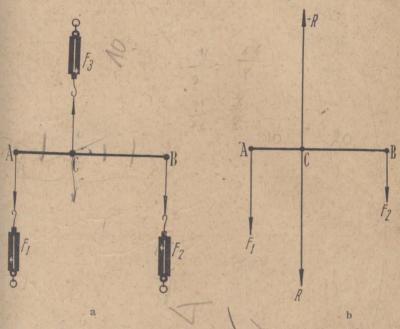


Fig. 52.—Composición de fuerzas paralelas de igual sentido.

Esto puede comprobarse experimentalmente con un dispositivo como el de la figura 52 a, en que la resultante de F_1 y F_2 está equilibrada por la fuerza F_3 , siendo ACB una varilla suficientemente rígida.

La figura 52 b corresponde a los vectores representativos

de las fuerzas.

Ejemplo: Si

AB = 30 cm

 $F_1 = 200 \text{ gr}$

 $F_2 = 100 \ gr$

Se comprueba que $F_3 = 300$ gr, y que: AC = 10 cm, y BC = 20 cm.

⁽¹⁾ Los puntos A, B y C son las intersecciones de las rectas de acción de las fuerzas F_1 , F_2 y R con una recta cualquiera del cuerpo rígido al que están aplicadas (ver final § 18).

2.—El resultado anterior puede alcanzarse reduciendo el caso al de fuerzas concurrentes. Para ello se agregan al sistema dos fuerzas iguales y contrarias f y f'aplicadas en los puntos A y B sobre la misma recta de acción. Estas fuerzas, como hemos visto, se equilibran y, por lo

tanto, no modifican la resultante del

sistema.

Componiendo f con F2 y f' con F1, tenemos las fuerzas concurrentes F2 y F'_1 , cuya resultante R será paralela a F_1 y F_2 , y de módulo igual a su suma. En efecto, si en O volvemos a descomponer la fuerza F_1 ' en sus componentes f' y F_1 y la F_2 ' en f y F_2 , la resultante de las cuatro fuerzas se reduce a la suma de F1 y F2, pues f y f' se equilibran. De los triángulos semejantes OAC y OMN se deduce:

$$\frac{AC}{OC} = \frac{MN}{ON} = \frac{f'}{F_1}$$

De OBC y OST resulta:

$$\frac{BC}{OC} = \frac{ST}{OS} = \frac{f}{F_2}$$

dividiendo ordenadamente,

$$\frac{AC}{OC} : \frac{BC}{OC} = \frac{f'}{F_1} : \frac{f}{F_2}$$

y como f=f'

$$\frac{AC}{BC} = \frac{F_2}{F_1}$$

como queríamos demostrar.

Fig. 53:-Resultante de fuerzas paralelas.

3.—Fuerzas paralelas y de sentido contrario.

De acuerdo con la definición de resultante de un sistema de fuerzas, sabemos que, si la fuerza F3 es igual y de sentido contrario a la resultante de F1 y F2, podemos también decir que F2 es igual y de sentido contrario a la resultante de F1 y F_s, que son paralelas y de sentido contrario (fig. 54).

Resulta, pues, observando la figura y recordando los resultados anteriores, que la resultante de dos fuerzas paralelas

y de sentido contrario es:

- a) Paralela a las componentes y del sentido de la mayor.
- b) De intensidad igual a la diferencia de las intensidades $R = \dot{F}_3 - F_1.$
 - c) El punto B es exterior al segmento AC, situado del la-

do de la fuerza mayor, y determina segmentos BA y BC que cumplen la condición



Fig. 54.—Composición de fuerzas paralelas de sentido contrario.

$$\frac{BA}{BC} = \frac{F_3}{F_1} \qquad [4']$$

Estos resultados quedan comprobados con la misma experiencia de la figura 52 a.

En el mismo ejemplo, si

$$AC = 10 \text{ cm}$$

 $F_1 = 200 \text{ gr}$
 $F_3 = 300 \text{ gr}$

se comprueba que

$$R = F_2 = 300 - 200 = 100 gr$$
,

y, además, como

$$\frac{BA}{BC} = \frac{300}{200}$$

resulta:

$$\frac{BA - BC}{BC} = \frac{300 - 200}{200} = \frac{1}{2}$$

luego

$$\frac{AC}{BC} = \frac{1}{2}$$

у:

$$BC = 2AC = 20$$
 cm

4.—Método gráfico para composición de fuerzas paralelas.

Dadas las fuerzas F_1 y F_2 , para determinar gráficamente las posiciones de la recta de acción de la resultante se representan la fuerza F_1 sobre la recta de acción de F_2 (F_1 ') y la fuerza F_2 sobre la recta de acción de F_1 (F_2 '). La resultante pasa por el punto O de intersección de las rectas MT y NS

que unen el origen de cada vector trasladado, con el extremo del otro. Por semejanza de triángulos se demuestra fácilmente que

$$\frac{SO}{ON} = \frac{BC}{AC} = \frac{F_1}{F_2}$$

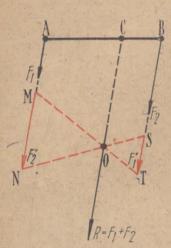


Fig. 55.—Método gráfico para hallar la resultante de fuerzas paralelas de igual sentido.

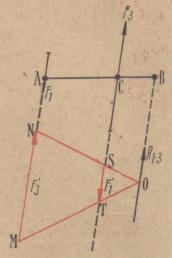


Fig. 56.—Resultante de fuerzas paralelas de sentido contrario. Método gráfico.

5. Descomposición de una fuerza en otras dos paralelas.

a) Dada la fuerza R el problema consiste en hallar otras dos tales que:

$$X + Y = R$$

$$\frac{X}{Y} = \frac{CB}{CA}$$

Resolviendo este sistema de ecuaciones resulta:

$$X = \frac{CB'}{AB}$$
. R

$$Y = \frac{CA}{AB}$$
. R

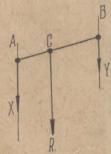
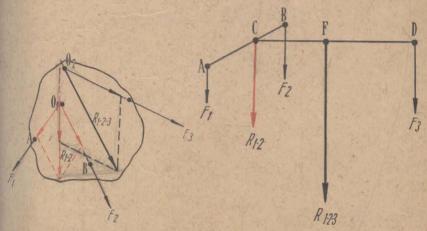


Fig. 57.—Descomposición de una fuerza en dos paralelas.

b) También puede presentarse el problema de hallar una fuerza

dada la resultante y una de las componentes; o sea: dados R,X y AC, calcular Y v CB

Resulta:


$$Y = R - X$$
 $CB = \frac{X}{R - X} \cdot CA$

§ 22.—Composición de fuerzas aplicadas en diferentes puntos de un cuerpo rígido.

De acuerdo con lo que hemos visto hasta ahora, la composición de fuerzas aplicadas en diferentes puntos de un cuerpo rígido se realiza teniendo en cuenta las siguientes propiedades:

- a) El punto de aplicación de cada fuerza puede trasladarse a lo largo de su recta de acción.
- b) El agregado de dos fuerzas iguales y contrarias, con la misma recta de acción, no modifica la resultante del sistema.

Si se trata de componer fuerzas coplanares no concurrentes se componen dos de ellas (F1 y F2) (Fig. 58) trasladándolas al punto O₁ de intersección; luego se compone esa primer

concurrentes.

Fig. 58.—Resultante de fuerzas no Fig. 59.—Composición de fuerzas paralelas no coplanares.

resultante R₁₋₂ con F₃ y se obtiene la resultante R₁₋₂₋₃, que pasa por el punto O2, y así sucesivamente con todas las fuerzas del sistema.

Para la composición de fuerzas paralelas no coplanares, como cada dos de ellas determinan un plano, se las compone aplicando el criterio anterior y el método del § 21 (fig. 59).

En el caso más general puede ocurrir que las fuerzas no sean paralelas ni se corten sus rectas en acción. Su solución la indicamos más adelante (§ 32).

§ 23.—Centro de gravedad.

Hemos llamado peso de un cuerpo a la fuerza con que es

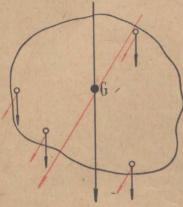


Fig. 60.—Centro de gravedad.

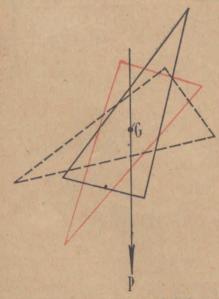


Fig. 61.—Centro de gravedad de un triángulo.

atraído por la tierra. Esta fuerza es la resultante del conjunto de fuerzas paralelas que representan el peso de cada uno de sus elementos.

Para cada posición del cuerpo, la recta de acción del peso, que es siempre vertical, tendrá una cierta posición con respecto al mismo. Pero siempre pasará por un determinado punto, que se llama centro de gravedad, en el cual se supone aplicado el peso.

Se llama, pues, centro de gravedad, a l punto por donde pasa la recta de acción del peso, cualquiera sea la posición del cuerpo.

En la figura 60 se han marcado, en negro y en rojo, los vectores representativos de las fuerzas de gravedad aplicadas a los diversos puntos de un cuerpo, para dos posiciones del mismo. La resultante de esas fuerzas (peso del cuerpo) pasa en ambas posiciones por el punto G (centro de gravedad).

En los cuerpos homogéneos el centro de gravedad coincide con el centro de figura.

Es fácil comprender que si hay elementos de simetría, el centro de gravedad se encuentra sobre los mismos. La figura 61 muestra la posición del centro de gravedad de una delgada chapa triangular homogénea. El punto G es aquel en que se cortan las tres medianas; está, por tanto, sobre cada una de ellas y a un tercio de su longitud, contado a partir del lado correspondiente.

Cambiando la posición del triángulo, el vector que representa su peso P conserva su posición vertical y pasa siempre

por el punto G.

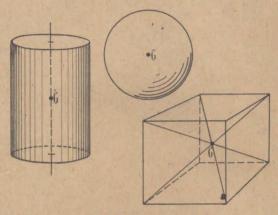
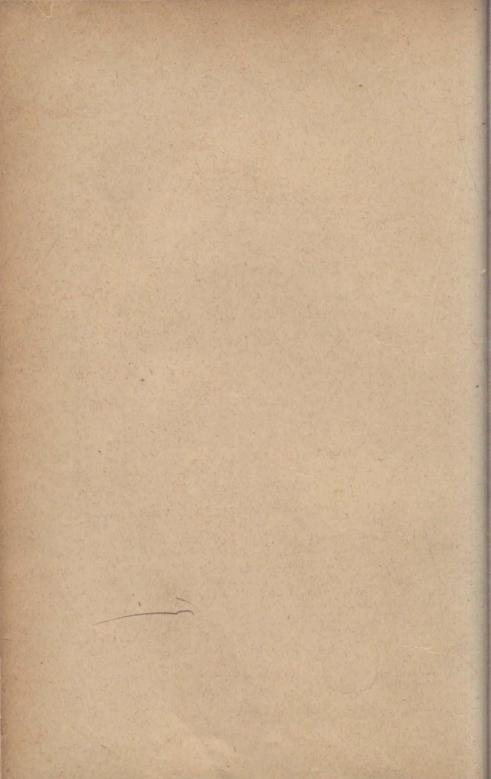


Fig. 62.—Centro de gravedad en esfera, cilindro y cubo.

El centro de gravedad de una esfera homogénea coincide con su centro geométrico; el de un cilindro recto circular es el punto medio de su eje, y el de un cubo está en la intersección de sus diagonales, (fig. 62).

Para un cono recto circular y para una pirámide regular el centro G queda sobre la altura y a un cuarto de su longitud


contada a partir de la base.

En caso de tratarse de cuerpos inhomogéneos o de forma irregular, la posición de G puede hallarse aplicando las reglas establecidas en el § 21 para la composición de fuerzas paralelas y del mismo sentido. Bastará para ello con determinar la posición del vector peso P como resultante de los pesos parciales de las diversas porciones del cuerpo: el punto por donde pasa para cualquier posición del cuerpo será G.

La ubicación exacta del punto G, puede hacerse analíticamente, en base a la fórmula [4], calculando sus coordenadas con respecto a una terna de ejes cartesianos de referencia.

También puede determinarse experimentalmente la posición del centro de gravedad, como veremos más adelante (§ 34).

El punto G puede quedar, en muchos casos, fuera del cuerpo.

CAPÍTULO III

MOMENTO DE FUERZAS — EQUILIBRIO

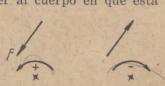
§ 24.—Momento de una fuerza.

Sellama momento de una fuerza con respecto a un punto al producto de la intensidad de la fuerza por la distancia del punto a la recta de acción de la fuerza.

En el caso de la figura 63, el momento de la fuerza F con respecto al punto

O es:

$$M = F \times d$$
 [1]


Si la fuerza se mide en Kgr y la distancia en m, el momento resulta en ki-

logrametros (Kgm). En general se medirá por el producto de la unidad de fuerza, por la unidad de longitud.

Gráficamente, el momento está representado por el doble del área del triángu-

lo determinado por el vector representativo de la fuerza y el punto O (fig. 64). Habrá que tener en cuenta las escalas del dibujo.

Se suele atribuir un signo a los momentos, pues según el sentido de la fuerza, tiende a M = 2. área ABO ABO mover al cuerpo en que está aplicada, alre-

a) momento positivo b) momento negativo Fig. 65.

Fig. 63.—Momento = F.d

dedor de O en el sentido que giran las agujas de un reloj o en el contrario. Convendremos en tomar este último como sentido positivo, entendiendo que se trata de una convención completamente arbitraria.

Fig. 64.—

§ 25.—Teorema de los momentos. (Teorema de Varignon).

El teorema de los momentos dice que el momento, con respecto a un punto, de la resultante de un sistema de fuerzas, es igual a la suma de los momentos de las componentes.

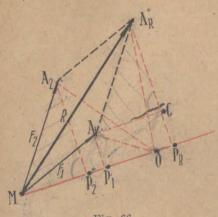


Fig. 66.

Lo demostraremos para el caso de dos fuerzas concurrentes.

Sean F_1 y F_2 las fuerzas cuya resultante es R. Tomemos arbitrariamente un punto cualquiera O del plano.

Decimos que el momento de R con respecto a O es igual a la suma de los momentos de F_1 y F_2 con respecto a O.

En efecto: el momento de R está representado por el doble del área del triángulo OMA_R

Los momentos de F₁ y F₂ están representados por el doble de las áreas de los triángulos OMA₁ y OMA₂:

$$M_{F_1} = 2$$
. área $\overrightarrow{OMA}_1 = \overline{OM} \times \overline{P_1A}_1$
$$M_{F_2} = 2$$
. área $\overrightarrow{OMA}_2 = \overline{OM} \times \overline{P_2A}_2$

Sumando:

$$M_{F_1} + M_{F_2} = \overline{OM} \times \overline{P_1 A_1} + \overline{OM} \times \overline{P_2 A_2} = \overline{OM} (\overline{P_1 A_1} + \overline{P_2 A_2})$$

Pero:

$$\overline{P_1A_1} + \overline{P_2A_2} = \overline{CP_R} + \overline{CA_R} = \overline{A_R} \overline{P_R}$$

Luego:

$$M_{F}$$
, + $M_{F_2} = \overline{OM} \times \overline{A_R P_R} = M_R$

como deseábamos demostrar.

Este resultado puede extenderse a un sistema formado por varias fuerzas, y se tendrá presente que los momentos se sumarán con su signo, es decir, se hará su suma algebraica.

§ 26.—Equilibrio de la palanca.

1.—Un cuerpo rígido de forma cualquiera con un eje fijo O, sometido a fuerzas tales como P y Q, que tienden a hacerlo girar en sentido contrario, constituye una palanca. Generalmente, las palancas tienen forma de barra, siendo el efecto de

Fig. 67.—Palanca.

su peso despreciable ante el de las fuerzas P y Q, que se llaman potencia y resistencia (1).

Nos limitaremos al caso en que las fuerzas P y Q sean coplanares y el eje O sea perpendicular al plano que determinan.

En la figura 67 este plano es el del dibujo; una recta AB,

que pasa por el punto O en que el eje fijo lo corta, determina, sobre las rectas de acción de las fuerzas, dos puntos A y B,

en los cuales podemos suponerlas aplicadas.

Es evidente que la palanca estará en equilibrio cuando la resultante de las fuerzas aplicadas pase por el punto O, ya que el apoyo producirá una reacción igual y contraria. que anulará su efecto.

Puede comprobarse que tal condición se cumple c u a n do el momento de la potencia P con respecto al punto O es igual al momento de la resistencia Q con respecto

a dicho punto.

Como ambas fuerzas tienden a producir rotación en sentido contrario, sus momentos serán uno positivo y el otro negativo. (En la figura 67, el momento de P es positivo y el de Q es negativo); y, por lo tanto, la suma algebraica de ambos momentos será nula en el caso de equilibrio.

a) Comprobación para el caso en que las fuerzas P y Q son paralelas.

Si la resultante R de las fuerzas P y Q pasa por O, siendo anulada por la reacción — R del apoyo, debe tenerse, de acuerdo a lo establecido en el § 21 (fig. 68).

a Q = resistencia o carga a vencer.

⁽¹⁾ Se suelen clasificar las palancas según la posición relativa de los puntos; de apoyo O y de aplicación de las fuerzas P y Q.

Son de primer género las que tienen el apoyo entre P y Q; de segundo, cuando está Q entre P y O (resistencia en el medio), y de tercero, cuando está P entre Q y O (potencia en el medio).

Con el significado: P = potencia = fuerza activa, que se aplica para equilibrar

Fig. 68.—Palanca con fuerzas paralelas.

$$\frac{OA}{OB} = \frac{Q}{P}$$
 [2]

Trazando por *O* la recta A'B' perpendicular a las direcciones de *P* y *Q* se determinan los triángulos rectángulos semejantes OAA' y OBB', en los que:

$$\frac{OA}{OB} = \frac{OA'}{OB'}$$

sustituyendo en lo anterior tenemos:

$$\frac{OA'}{OB'} = \frac{Q}{P}$$

o también

$$P \times OA' = Q \times OB'$$

Como OA' = a y OB' = b son los brazos de momento, o de palanca, de las fuerzas P y Q con respecto al punto O, podemos escribir como condición de equilibrio:

$$P \cdot a = Q \cdot b$$
 [3]

Momento de la potencia = momento de la resistencia y también, teniendo en cuenta los signos de los momentos:

$$P \cdot a - Q \cdot b = 0$$
 [4]

Suma algebraica de los momentos igual a cero

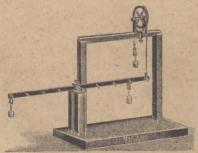


Fig. 69.—Comprobación de la condición de equilibrio en la palanca.

b) Comprobación para el caso en que las fuerzas coplanares P y Q son concurrentes.

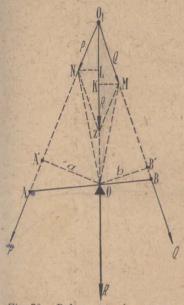


Fig. 70.—Palanca con fuerzas concurrentes.

Transportemos las fuerzas P y Q al punto O₁, de encuentro de sus rectas de acción y determinemos su resultante R (fig. 70).

Si esta fuerza pasa por el punto de apoyo O, habrá equilibrio por efecto de la reacción — R

que la anula.

Trazando por O los brazos OA' = a y OB' = b de las fuerzas probaremos que en este caso también debe tenerse como condición de equilibrio la igualdad del valor de los momentos

$$P.a = Q.b$$

En efecto, los valores de estos momentos están representados por el doble del área de los triángulos ONO₁ y OMO₁, respectivamente, según se ha visto en el § 24.

Pero dichos triángulos son equivalentes, ya que pueden considerarse con base común OO₁ y con alturas MK y NL iguales (¹).

Por tanto, los momentos representados por ellos serán iguales en valor absoluto, aunque de signo contrario.

enunciada bajo su forma P.a — Q.b = 0.

2.—Caso de tres o más fuerzas aplicadas.—En general, además de las fuerzas P y Q, debe tenerse en cuenel peso propio π de la palanca como aplicado en su centro de gravedad G, y pueden

cumpliéndose la condición

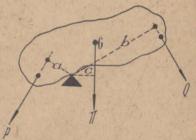


Fig. 71.—Palanca pesada.

existir otras fuerzas más, distribuídas arbitrariamente.

⁽¹⁾ MK y NL son las alturas de los triángulos iguales O_1MZ y O_1NZ , de base común O_1Z , en el paralelogramo de las fuerzas P y Q.

Refiriéndonos al caso de fuerzas coplanares, actuando en un plano perpendicular al eje O, es posible probar que, para que haya equilibrio, debe cumplirse la siguiente condición general:

La suma algebraica de los momentos de todas las fuerzas aplicadas a la palanca debe ser igual a cero, condición expresa-

da por la fórmula:

$$\Sigma M = 0$$
 [5]

en la que Σ M representa la suma de los momentos: Σ M = P . a — Q . b — π . c, en el caso de la figura 71.

(Se demuestra aplicando lo expuesto en el § 22 para fuerzas paralelas y el teorema de los momentos (§ 25) para fuerzas concurrentes).

APLICACIONES

I.—Sobre una barra cilíndrica AB, de 3 metros de longitud y 50 kgr. de peso, con su apoyo a 1 metro de A, actúa en A una fuerza vertical de 80 kgr. Calcular la fuerza que en B equilibra el sistema.

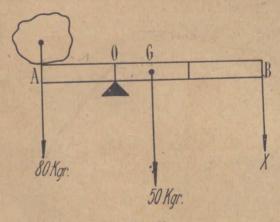


Fig. 72.

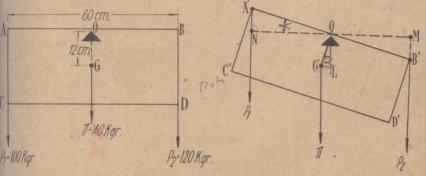
Aplicando la fórmula [5]:

$$80 \times 1 - 50 \times 0,5 - X \times 2 = 0$$

$$X = \frac{80 - 25}{2} \text{ kgr} = 27,5 \text{ kgr}$$

II.—Se tiene una barra de longitud l=4 m apoyada en sus extre-

mos, cuyo peso propio es P=60~kgr y con una carga $P_1=500~kgr$ a 1,5 m del apoyo A. Calcular las reacciones X e Y en los apoyos.



Aceptando que las reacciones son verticales se tiene:

$$X + Y = P + P_1$$

Aplicando momentos como palanca apoyada en A y con la fuerza Y reemplazando al apoyo B:

III.—Una barra cilíndrica, cuyo perfil longitudinal es A B C D, está suspendida de un eje que pasa por O, punto medio de AB.

a) No está en equilibrio.
 b) En su posición de equilibrio.
 Fig. 74.—Palanca pesada.

Bajo la acción de su peso π estará en equilibrio cuando AB y las demás generatrices estén horizontales, (pues entonces la recta de acción pasará por O).

Suponiendo que: AB = 60 cm

 ${
m GO}=12$ cm y $\pi=40$ kgr, se desea establecer la nueva posición de equilibrio cuando en los puntos A y B se apliquen pesos:

 $P_1 = 100 \text{ kgr y } P_2 = 120 \text{ kgr respectivamente.}$

Es evidente que las fuerzas desiguales P₂ P₁ producen momentos distintos con respecto a O, punto equidistante de ellas.

Si la barra no tuviera peso, giraría hasta que AB quedara vertical

con el peso mayor P2 colgado en la parte de abajo.

Pero en el caso real, en cuanto se inicia el giro de la barra, el peso π , que pasa siempre por el centro de gravedad G, deja de pasar por O, originando un momento positivo que se suma al de P_1 .

El equilibrio se restablece después que la barra ha girado un ángulo α tal que la suma de los momentos de π y de P, sea igual al momento de P₂ respecto a O. La recta AB toma la posición A'B' (figura 74 b).

La condición de equilibrio es:

$$P_1 \times ON + \pi \times G'L - P_2 \times OM = 0 \quad (\Sigma M = 0)$$

Como el ángulo α girado por AB es igual al que gira cualquier otra recta, tal como OG (cuerpo rígido), se tiene, aplicando funciones trigonométricas:

$$ON = OM = OA' \cdot \cos \alpha = OA \cos \alpha$$

$$G'L = OG'. \times sen \alpha = OG. sen \alpha$$

y sustituyendo y trasponiendo:

$$\pi$$
 . OG . sen $\alpha = (P_2 - P_1)$, OA . cos α

y también:

$$\frac{\text{sen }\alpha}{\cos \alpha} = \frac{(P_2 - P_1) \text{ OA}}{\pi \cdot \text{OG}}$$

o lo que es lo mismo:

tg
$$\alpha = \frac{(P_2 - P_1) \times OA}{\pi \times OG} = \frac{(120 - 100) \cdot 30}{40 \times 12} = \frac{600}{480} = 1,25$$

El equilibrio se restablece cuando la barra ha girado un ángulo $\alpha=51^{\circ}\cdot20^{\circ}$ cuya tangente vale 1,25.

§ 27.—Balanza.

1.—La balanza es un instrumento usado para determinar el peso normal de los cuerpos, comparándolo con el de pesas contrastadas, referidas al Kgr patrón.

Consta de una palanca de brazos iguales,llamada cruz de la

Fig. 75.—Modelo de balanza de precisión.

balanza, apoyada por un eje, que es la arista de un prisma triangular de acero (cuchilla), sobre una pequeña plancha plana del mismo material o de ágata.

De los extremos A y B de la cruz (fig. 76) penden dos platillos, suspendidos mediante un dispositivo análogo al anterior, con el que se reducen al mínimo los roces. En estos platillos se colocan las pesas y los cuerpos cuyo peso normal se busca.

Las desviaciones que experimenta la cruz se observan

por el desplazamiento sobre una escala del extremo de una varilla fijada a ella, que se llama fiel.

La figura 75 representa un modelo de balanza de laboratorio protegida por una caja de madera y vidrio con tornillos de nivelación para verticalizar la columna central de sostén de la cruz.

La figura 76 representa en esquema una balanza.

Siendo los brazos OA y OB iguales y los platillos de igual peso, la balanza queda en equilibrio en una posición tal que el centro de gravedad de la cruz está sobre la vertical del punto O del eje de apoyo.

Para simplificar el problema, supondremos que G es el centro de gravedad del sistema

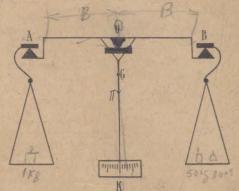


Fig. 76.—Esquema de balanza.

formado por la cruz, el fiel y los dos platillos. Por la simetría de las cargas, este punto queda sobre la misma vertical de O.

Colocando cargas iguales en ambos platillos, la posición del fiel sobre la escala no debe cambiar, siempre que la cruz sea rígida (cosa que en la práctica puede aceptarse dentro de ciertos límites de carga); pues el centro de gravedad del sistema total queda siempre sobre la vertical de O, la que sigue siendo eje de simetría con respecto a las cargas.

Aplicando la condición de equilibrio de la palanca podemos también decir que el fiel seguirá en el mismo punto K de la escala, siempre que agreguemos en los platillos pesas cuyos momentos con respecto a O sean iguales.

Y como los brazos OA y OB los hemos supuesto iguales, los pesos P₁ y P₂ colocados en los platillos también deben serlo

para que eso suceda.

A Para pesar los cuerpos se comienza por observar la posición del extremo del fiel sobre la escala, estando los platillos de scar ados. Si la balanza está en buenas condiciones y nivelado el fiel debe detenerse en la división media K, o próximo

Observada la posición de equilibrio, se coloca en un platillo I cuerpo C, cuyo peso normal Pn se busca, y en el otro se agre an pesas contrastadas de una buena caja de pesas, hasta

que e fiel vuelva al mismo punto K.

Obtenido este resultado, se tiene Pn = P1.

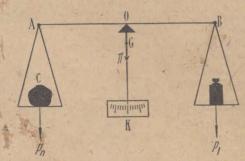


Fig. 77.—Realización de una pesada.

 \times 2.—Sensibilidad.—Según el valor del peso π de la cruz, del fiel y los platillos y la distancia OG del eje de rotación al centro de gravedad G, variará la dificultad para volver exactamente al punto de equilibrio K.

Si suponemos que los puntos A, B y O están, en la posición de equilibrio inicial, sobre la misma recta horizontal, una diferencia de peso P_1 — P_n hará girar la cruz y el fiel de un ángulo α , tal que se cumple la condición. (Ver § 26-2).

$$\mathrm{tg}~\alpha = \frac{(\,\mathrm{P_1} - \,\mathrm{P_n}\,)\,\,.\,\,\mathrm{OA}}{\pi\,\,.\,\,\mathrm{OG}}$$

Llamando l al brazo $\mathrm{OA} = \mathrm{OB}$ de la balanza y d la distancia $\mathrm{OG},$ se tiene.

$$tg \alpha = \frac{(P_1 - P_n)l}{\pi \cdot d}$$
 [6]

Llámase sensibilidad e de la balanza al ángulo de que giran la cruz y

el fiel, cuando la diferencia de pesos aplicados en los platillos es un miligramo.

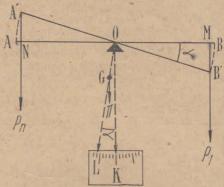


Fig. 78.—Posición de equilibrio de la balanza.

Teniendo en cuenta que se observan sólo valores pequeñas de la desviación, para el caso considerado es:

$$e = \frac{\operatorname{tg} \, a}{P_1 - P_n} = \frac{1}{\pi \, d} \tag{7}$$

Si los puntos O, A y B no están sobre la misma horizontal la expresión de e es más complicada, pero su definición no cambia.

3.—Pesadas con balanzas muy sensibles.

Con balanzas muy sensibles se emplean pesas especiales en forma de *jinetillos* que se colocan con pinzas o soportes adecuados sobre divisiones del brazo de la cruz.

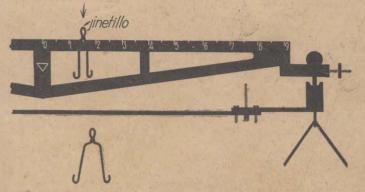


Fig. 79.—Método para pesar miligramos.

La figura 79 muestra un brazo OB dividido en 20 partes, numeradas de 1 a 10, alternativamente.

Un jinetillo de peso 10 mgr, colocado en la división 1,5, produce el

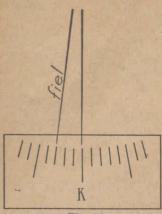


Fig. 80.

mismo momento respecto a O que una pesa igual a 0,15 imes 10 = 1,5 mgr aplicada en el platillo. La división indicada permite, usando dicho jinetillo, variar el peso en 1/2 miligramo. De este modo puede volverse el fiel al punto de partida K.

Si se determina previamente la sobrecarga S que, agregada en un platillo, hace correr al fiel de una división sobre su escala, no será necesario volver al punto K para conocer el peso Pn del cuerpo.

Si las pesas P₁ aplicadas en B llevan al fiel a la posición que indica la figura 80, 3 divisiones a la izquierda de K, la diferencia de pesos será:

$$P_1 - P_n = 3 \times S$$

(S se lo determina poniendo sobrecarga conocida C y viendo número n de divisiones de que se corre el fiel; para pequeños corrimientos: $S = \frac{C}{n}$

4.—Balanzas inexactas.

Si los brazos no son rigurosamente iguales o no son rígidos, la vuelta a la posición de equilibrio no implica la igualdad de los pesos P_n y P₁, sino que la suma de los momentos de las fuerzas aplicadas a la balanza vuelve a ser igual a cero.

Para pesar exactamente con balanzas de brazos diferen-

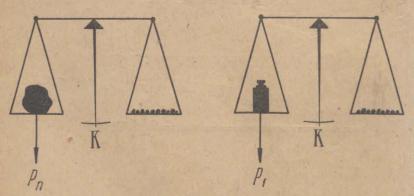


Fig. 81.-Método de Borda.

tes puede emplearse el método de sustitución o de Borda, que consiste en equilibrar el cuerpo poniendo municiones u otra

tara en un platillo, y luego sacar el cuerpo y reemplazarlo con pesas P_1 hasta volver el fiel al mismo punto K.

Es evidente que aunque los brazos sean desiguales debe

tenerse $P_1 = P_n$.

También se emplea el método de Gauss (doble pesada). Consiste en hallar el peso P_1 del cuerpo colocado en uno de los platillos y luego el peso P_2 del mismo colocado en el otro platillo. Siendo a_1 y a_2 los brazos desiguales de la balanza, debe tenerse:

$$P_1 a_1 = P_n a_2$$

 $P_n a_1 = P_2 a_2$

y por tanto:

$$\frac{P_1}{P_n} = \frac{P_n}{P_2} \therefore P_n = \sqrt{P_1 P_2}$$
 [8]

Si P_1 y P_2 son poco diferentes, se toma, con suficiente aproximación, el promedio:

$$P_{n} = \frac{P_{1} + P_{2}}{2}$$
 [9]

En las balanzas llamadas de precisión, de gran sensibilidad (permiten pesar hasta el décimo de miligramo) alcanza a apreciarse el efecto de diferencias del orden del micrón en las longitudes de los brazos.

§ 27 a).—Otros tipos de balanza.

a) Romana (figura 82a). Es una balanza de brazos desiguales, en que

Fig. 82.-a) Romana b) Pesacartas.

el momento del peso a determinar se equilibra modificando el brazo de una pesa constante llamada pilón. Sobre el brazo graduado se lee directamente el peso del cuerpo.

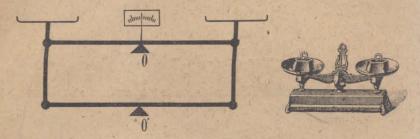
El pesacartas (fig. 82 b), se basa en el mismo principio.

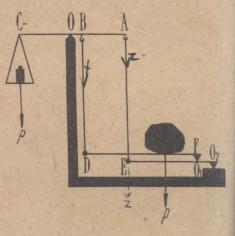
b) Balanza de Roberval (figura 83). Está formada por un cuadrilátero articulado, cuyos lados horizontales giran alrededor de los ejes O y O'.

En esta forma, los platillos se desplazan paralelamente a

sí mismos.

El fiel vuelve a la posición de equilibrio con cargas iguales en los platillos.




Fig. 83 a y b.—Esquema y balanza Roberval.

c) Báscula. Se utiliza para pesar cargas muy grandes que se colocan sobre una plataforma horizontal DF.

Esta plataforma se apoya en el punto O1 de la palanca O₂E, y cuelga, por , la varilla BD, de la palanca AC. A su vez, O_2E está apoyada en O2 y colgada de A por la varilla AE.

Para que el peso sea independiente de su posición sobre la plataforma, ésta debe desplazarse paralelamente a sí misma, lo que se consigue construyendo las palancas de modo que se cumpla la condición:

$$\frac{O_2O_1}{O_2E} = \frac{OB}{OA} {1 \choose OA}$$
 [10] Fig. 84 a.—Esquema de báscula.

Colocada la carga en una posición cualquiera, se descom-

⁽¹⁾ Por semejanza de triángulos es fácil llegar a la condición de la fórmula [10] esta-

ondrá en dos fuerzas X e Y aplicadas en O1 y en D, o lo que s lo mismo en B.

La fuerza Y aplicada en O_1 actúa sobre la palanca O_2E

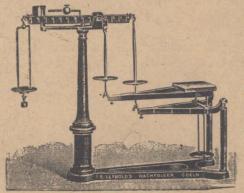


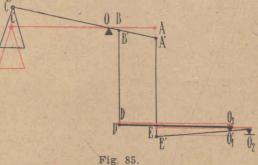
Fig. 84 b.—Modelo de báscula.

se equilibrará con una fuerza Zaplicada en E (o en A), al que:

$$Z = \frac{O_2O_1}{O_2E} Y = \frac{OB}{OA} . Y$$
 [por 10]

El equilibrio de la palanca AOC impone la condición:

$$B \cdot OC = X \cdot OB + Z \cdot OA$$


eciendo, para una rotación de la palanca AC, la condición: desplazamiento de $B=\frac{1}{2}$ esplazamiento de O_1 . En efecto (figura 85), debe ser: $O_1O_1=DD'$. Pero

$$O_1O'_1 = \frac{O_1O_2}{O_2E}$$
, $EE' = \frac{O_1O_2}{O_2E}$, AA'

Además : $DD' = \frac{OB}{OA}$, AA'

igualando

o sea:

$$p \cdot OC = X \cdot OB + Y \frac{OB}{OA} OA = (X + Y) OB$$

y como X + Y = P:

$$p \cdot OC = P \cdot OB$$
 [11]

Por tanto, el peso buscado actúa sobre la palanca AOC como si actuara todo en B.

$$P = \frac{OC}{OB} p$$

§ 28.—Equilibrio de las poleas fija y móvil.

__1.—Un disco que gira alrededor de un eje fijo O, sujeto de un soporte mediante una chapa, y que tiene una garganta por donde pasa un hilo, una soga, un cable o una cadena, constituye una polea fija (fig. 86).

De un extremo de la soga o cadena pende un peso Q y en el otro se ejerce una fuerza P para equilibrarlo o levantarlo. Cualquiera sea la posición de la soga, la polea funciona como una palanca de brazos OA y OB iguales. Por la condición a cumplir por los momentos debe tenerse, en el caso de equilibrio.

$$P = Q \qquad [13]$$

2.—Una polea con una carga Q colgada de su chapa y sostenida por una soga con un extremo M fijado a un soporte y el otro sometido a la acción de la fuerza P, constituye una polea móvil.

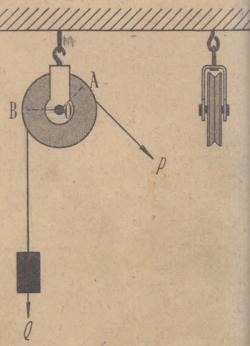


Fig. 86.—Polea fija.

Generalmente, la polea móvil va acoplada a una polea

fija, que permite dar una dirección conveniente a la fuerza P, sin cambiar su valor (fig. 87).

Cuando los dos tramos de la soga son verticales, la fuerza P necesaria para equilibrar la carga Q es:

$$P = \frac{Q}{2}$$
 [14]

Esto surge de la observación de la figura 87 (a); las dos

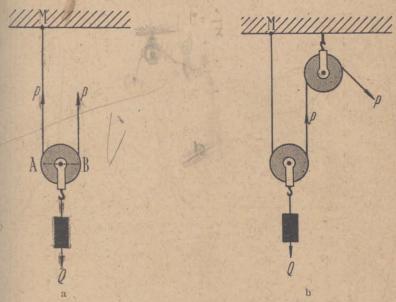


Fig. 87.—Polea móvil con cuerdas paralelas.

fuerzas P deben ser iguales cuando la polea está en equilibrio.

Como su resultante, de intensidad igual a su suma, debe

ser igual en valor a Q, cada una debe valer la mitad, o sea $\frac{Q}{2}$

Si el peso de la polea no es despreciable, se lo considera incluído en la carga Q.

Si las fuerzas P no son paralelas y verticales, su valor es mayor que $\frac{Q}{2}$ y se obtiene aplicando la regla del paralelogramo. (Se descompone la fuerza — Q en las direcciones de las P) (figura 88).

Resulta, por ser un rombo el paralelogramo:

$$P = \frac{Q/2}{\cos \alpha} = \frac{Q}{2 \cos \alpha}$$
 [15]

Fig. 88.—Polea móvil con cuerdas no paralelas.

§ 28 a).—Combinaciones de poleas.

1) Aparejo factorial o en serie.

Está formado por n poleas fijas sobre una misma montura y otras tantas poleas móviles también colocadas sobre una misma montura, de la cual pende la carga a levantar.

La resistencia Q está formada por dicha carga y el peso de la parte móvil del aparejo.

La figura 89 muestra dos tipos de aparejos con tres poleas fijas y tres móviles. Es fácil comprender que la fuerza en equilibrio P es, en ese caso, la sexta parte de la fuerza Q, pues está sostenida por seis cuerdas cuyas tensiones se igualan. En general, siendo n el número de poleas móviles, la fuerza P será:

$$P = \frac{Q}{2n}$$
 [16]

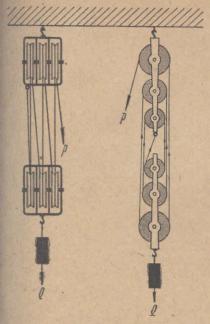


Fig. 89.—Aparejo factorial.

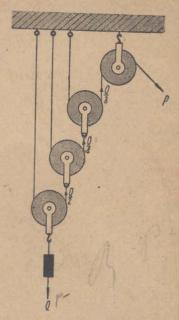


Fig. 90.—Aparejo potencial.

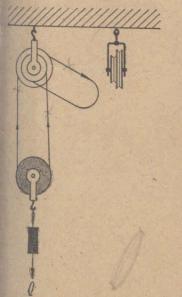


Fig. 91.—Aparejo diferencial.

2) Aparejo potencial.

Son n poleas móviles. La cuerda que pasa por cada una de ellas tiene un extremo fijo a un soporte común y el otro a la polea siguiente. Considerando despreciable el peso de las poleas, la primera reduce a la mitad de $\mathbb Q$ la fuerza de equilibrio; la segunda la

reduce a $\frac{4}{4}$; la tercera a $\frac{4}{8}$, y así sucesivamente; de modo que si son n las poleas móviles se verifica:

$$P = \frac{Q}{2^n}$$
 [17]

3) Aparejo diferencial.

Consiste en una polea móvil y una polea fija formada por otras dos rígidamente unidas y de distinto radio. Aplicando momentos a la polea fija (fig. 91) se tiene:

$$\frac{Q}{2} R - PR - \frac{Q}{2} r = 0$$

$$PR = \frac{Q}{2}R - \frac{Q}{2}r = \frac{Q}{2}(R - r)$$

por tanto:

$$P = \frac{Q}{2} , \frac{R - r}{R}$$
 [18]

Se deduce de esta fórmula que la fuerza P disminuye con la diferencia R-r de los radios; pero debe destacarse que también disminuye la velocidad con que sube Q, y si R=r es $P\equiv 0$, pero Q no sube.

§ 29.-Equilibrio del torno.

Un cilindro móvil alrededor de su eje, bajo la acción de una fuerza P aplicada en una manivela situada en su extremo y con una soga arrollada de la que pende un peso Q, constituye un mecanismo llamado torno. Sirve para elevar pesos con fuerzas menores (fig. 92).

El cálculo del valor de la fuerza de equilibrio P se hace aplicando las condiciones de equilibrio de la palanca a una sección transversal indicada en la figura 92 b.

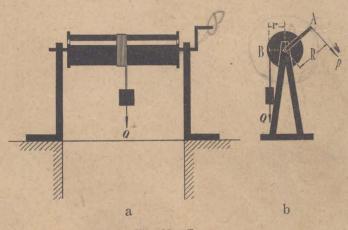


Fig. 92 .- Torno.

Siendo el torno formado por piezas rígidas puede establecerse que en el caso de equilibrio los momentos de las fuerzas P y Q con respecto al eje O son iguales y de signo contrario.

En valor absoluto se tiene:

$$P \times OA = Q \times OB$$
 o sea: $P \cdot R = Q \cdot r$

y por lo tanto:

$$P = Q - \frac{r}{R} \qquad 9 - \frac{q}{R} \qquad [19]$$

§ 30.—Equilibrio en el plano inclinado.

Un plano AB que forma un ángulo a con el horizonte constituye un plano inclinado.

1 = AB es su longitud, b = AC su base, h = BC su altura

y tg
$$\alpha = \frac{BC}{AC}$$
 su pendiente.

Un cuerpo de peso P colocado sobre él puede ser sostenido con una fuerza F' menor que el peso.

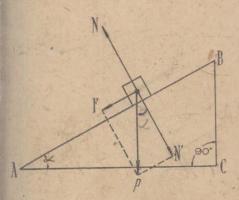


Fig. 93 a.—Equilibrio en el plano inclinado.

Para calcular la fuerza de equilibrio F' debemos tener en cuenta que el plano aplica al cuerpo una fuerza de reacción que, no habiendo resistencias de rozamiento, es normal o perpendicular a la superficie AB.

Teniendo en cuenta esto, descompondremos el peso P del cuerpo en dos fuerzas, una N' en dirección normal al plano AB y otra F paralela al mismo.

La componente N' será equilibrada por la reacción igual y contraria N del plano, quedando sólo la componente F, que hará deslizar el cuerpo hacia el punto A.

Para evitar este movimiento, bastará aplicar una fuerza F' igual y contraria a F, que será la fuerza de equilibrio buscada.

Observando el paralelogramo de fuerzas construído para descomponer P en N' y F, se ve que es un rectángulo y que los vectores P y N' forman el ángulo α de inclinación del plano AB sobre el horizonte.

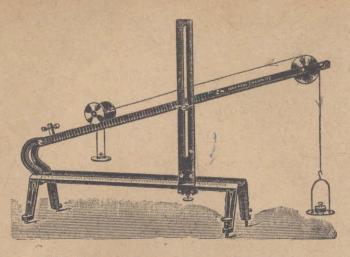


Fig. 93 b—Modelo de plano inclinado para verificar las leyes del equilibrio.

(P ⊥ AC y N' ⊥ AB) (fig. 93 a).

Los triángulos LSG y ABC (fig. 94), son semejantes, pues son rectángulos y tienen un ángulo agudo igual.

Luego:

o sea:

$$\frac{GL}{GS} = \frac{BC}{AB} \quad y \quad \frac{LS}{GS} = \frac{AC}{AB}$$

$$\frac{F}{P} = \frac{h}{I} \quad y \quad \frac{N^{2}}{P} = \frac{b}{I} \quad [20]$$

Fig. 94.

teniendo en cuenta $\frac{h}{1} = \operatorname{sen} \alpha y \frac{b}{1} = \cos \alpha$

se tiene:

$$F = P \frac{h}{l} = P \text{ sen } \alpha$$
 [21]
$$N = P \frac{b}{l} = P \cos \alpha$$

Ejemplo: Un cuerpo de 250 kgr está apoyado sobre un plano de inclinación $a=30^{\circ}$. Calcular la fuerza que lo mantiene en equilibrio y la reacción del plano, suponiendo nulo el frotamiento.

$$F' = 250 \times \text{sen } 30^{\circ} = 250 \frac{1}{2} = 125 \text{ Kgr.};$$

$$N = 250 \times \cos 30^{\circ} = 250 \frac{\sqrt{3}}{2} = 216 \text{ Kgr.}$$

§ 31.—Cuplas.

1.—Un sistema de dos fuerzas paralelas, de igual intensidad y sentido contrario, constituye una cupla o par de fuerzas.

Aplicando las reglas para la composición de fuerzas paralelas, la intensidad de la resultante, igual a la suma algebraica de las intensidades, será nula.

En cuanto a la recta de acción de la resultante, si nos valemos de la fórmula (4') § 21-3 para determinar su posición

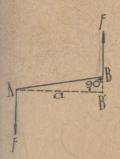


Fig. 95.—Cupla.

en el caso de dos fuerzas paralelas y de sentido contrario, en condiciones tales que una de ellas modifica su intensidad acercándose a la de la otra, verificaremos que, a medida que las intensidades se aproximan a un único valor, la resultante se aleja indefinidamente. En el límite, las fuerzas se igualan y la resultante quedaría indefinidamente alejada, aunque ya carece de sentido hablar de resultante, pues su valor se ha hecho nulo.

Sin embargo, el efecto de una cupla no es nulo sobre el cuerpo en que actúa, pues puede producir rotaciones; se ca-

racterizará, entonces, no por una resultante, sino por un momento.

Momento de una cupla es el producto de una de sus fuerzas F por la distancia que separa ambas rectas de acción (fig. 95). $M = F \times a$ [22]

Es fácil demostrar que el momento de la cupla, o sea la

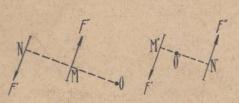


Fig. 96.-Momento de una cupla.

suma algebraica de los momentos de sus fuerzas con respecto a cualquier punto de su plano, es un valor constante igual a $F \times a$.

En efecto, sea un punto O exterior a las fuerzas; trazando OMN perperpendicular a sus

rectas de acción se tiene la suma de momentos:

$$+ F' \times ON - F'' \times OM = F (ON - OM) = F \times MN = F \cdot a$$

Tratándose de un punto interior O', los dos momentos son positivos en el caso de la figura 96 y su suma da:

$$F' \times O'M' + F'' \times O'N' = F (O'M' + O'N') = F \cdot M'N' = F \cdot a$$

2.—Representación vectorial.

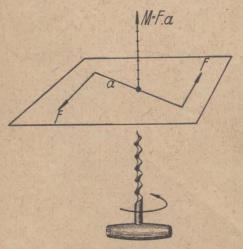


Fig. 97.—Representación vectorial del momento de una cupla.

Una cupla se representa por un vector perpendicular a su plano (o sea dirigido en la dirección común a los ejes de las rotaciones que podría producir) y cuyo módulo es el momento

M=F.a.

El vector tiene un sentido tal que, vista desde su extremidad, la cupla tiene momento positivo.

Un tirabuzón girando en el sentido de rotación de la cupla progresa en el sentido del vector que la representa.

3.—Composición de cuplas.

Aplicando las reglas establecidas para la composición de fuerzas, se demuestra que una cupla puede trasladarse libremente en su plano sin que cambie su efecto. Dos cuplas coplanares pueden trasladarse hasta

que hagan paralelas las direcciones de sus fuerzas y luego pueden componerse éstas dos a dos, obteniendo como resultante una nueva cupla.

Es más cómodo el empleo de los vectores representativos para hallar esta resultante; estos vectores pueden trasladarse paralelamente a mismos hasta poner en conoritacto sus genes (lo que equivale al traslado de las cuplas).

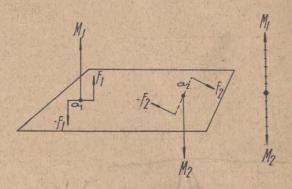


Fig. 98.—Composición de cuplas coplanares.

Dos cuplas coplanares de momentos $M_1 = F_1 \ a_1 \ y \ M_2 = F_2 \ a_2$ se componen trasladando sus vectores representativos hasta que queden en contacto sus orígenes, en un punto (figura 98).

El vector resultante será de la misma dirección de los componentes, del sentido del mayor M_2 y de módulo igual a la suma algebraica de los componentes:

$$M_R = F_1 a_1 - F_2 a_2$$

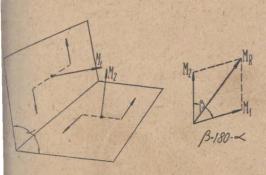


Fig. 99.—Composición de cuplas no coplanares.

Si las cuplas actúan en planos paralelos de un cuerpo rigido también su resultante es una cupla de vector paralelo a los componentes y de momento igual a la suma algebraica de los de aquéllos.

Tratándose de cuplas que actúan en planos no paralelos, los vectores representativos se componen con la regla del paralelogramo (figura 99).

- § 32.—Equilibrio de un cuerpo sometido a un sistema de fuerzas ualesquiera.
 - a) Traslación paralela de fuerzas.
 - Si imaginamos una fuerza F aplicada en un punto A de un cuerpo,

podemos siempre trasladarla paralelamente a sí misma a otro punto tal como B (figura 100).

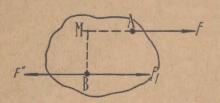


Fig. 100.—Translación de F desde A hasta B.

En efecto, imaginemos aplicadas en B dos fuerzas F₁ y F" iguales y paralelas a F y de sentido contrario; el sistema de las tres fuerzas F, F₁ F" es equivalente a la sola fuerza F, ya que las dos últimas se equilibran.

Pero este sistema puede considerarse como formado por la fuerzas F., (F trasladada paralelamente hasta B) y la cupla formada por las fuerzas F y F", cuyo momento es igual al de la fuerza

F con respecto al punto B (M = F . BM).

b) Resultante de un sistema de fuerzas

c u a l e s q u i e r a. Sean (figura 101) varias fuerzas, coplanares o no, aplicadas en dis-

tintos puntos A, B, C, D ... de un cuerpo rígido.

Todas ellas pueden transportarse a un punto cualquiera O en las fuerzas F1', F2', F3', F4' ..., las que dan una resultante única R, determinada con la regla del paralelogramo.

Pero como cada traslado exige el agregado de una cupla, habrá que componer los respectivos vectores M₁, M₂, M₃, M₄..., que darán una cupla resultante de vector M₁.

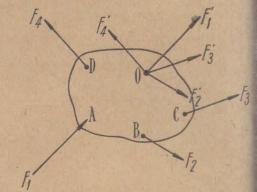


Fig. 101.—Resultante de un sistema de fuer zas, hallada trasladándolas al punto O.

c) Condiciones generales del equilibrio.

Para que el cuerpo quede en equilibrio bajo la acción del sistema de fuerzas aplicado deben cumplirse dos condiciones.

I) Las fuerzas trasladadas a un punto deben dar resultante R'nula; es decir, que el polígono de los vectores fuerza debe ser cerrado:

$$R = F_1 + F_2 + F_3 + F_4 + \dots = 0 \quad (Suma \ vectorial)$$

II) El vector resultante de los que representan las cuplas agregadas debe ser también nulo (polígono de vectores cupla, cerrado):

$$M = M_1 + M_2 + M_3 + M_4 + \dots = 0$$
 (Suma vectorial)

Nota. — Si las fuerzas son cóplanares, esta última condición se reduce a que la suma algebraica de los momentos de las fuerzas con respecto a un punto cualquiera del plano debe ser igual a cero.

§ 33.—Equilibrio de cuerpos suspendidos y apoyados.

1.—Equilibrio.

Estudiaremos las condiciones de equilibrio de cuerpos sometidos a la acción de su propio peso y de las reacciones que pueden provenir de un punto o un eje de suspensión (cuerpos suspendidos) o de un plano de apoyo (cuerpos apoyados).

Según la posición del centro de gravedad con respecto al punto, eje o plano, pueden presentarse tres tipos de equilibrio.

- a) Estable, realizado cuando al desviar el cuerpo de su posición de equilibrio vuelve a ella, por efecto de las fuerzas aplicadas.
- b) *Inestable*, cuando al desviar el cuerpo de su posición de equilibrio no vuelve, sino que se aleja de ella.
- c) Indiferente, cuando en cualquier posición que se le coloque se mantiene en equilibrio.

2.—Cuerpos suspendidos.

Condición de equilibrio.—Para que un cuerpo suspendido esté en equilibrio es necesario que la vertical que pasa por el centro de gravedad G, contenga al punto o corte al eje de suspensión. En este caso la reacción R aplicada en O y el peso P forman un sistema de dos fuerzas iguales y contrarias y, por tanto, se equilibran (figura 102).

Es fácil comprobar que si el centro de gravedad G está debajo del punto o eje de suspensión O, el equilibrio es estable.

Si el centro de gravedad está más alto que el punto de suspensión, el equilibrio es, en cambio, inestable.

Las figuras 103 y 104 muestran que se originan al desplazar el cuerpo, en cada caso, cuplas formadas por el peso P y la reacción R paralela, igual y de sentido contrario, las que tienden siempre a llevar el centro de gravedad G a la posición más baja posible.

Cuando el cuerpo está suspendido por su centro de gravedad, el equilibrio es indiferen-

te, quedando en equilibrio en cualquier posición que se lo coloque (fig. 105).

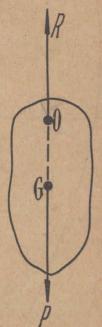
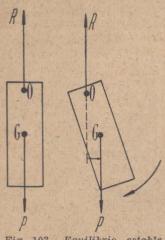
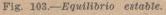




Fig. 102.—Cuerpo suspendido en equilibrio.

3.—Cuerpos apoyados.

Condición de equilibrio.—Un cuerpo apoyado sobre un plano está en equilibrio cuan-

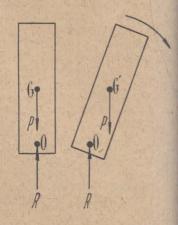


Fig. 104.—Equilibrio inestable.

do la vertical del centro de gravedad cae dentro de la base de sustentación.

Fig. 105.—Equilibrio indiferente.

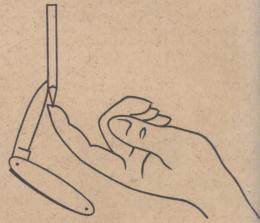


Fig. 106.—Equilibrio estable en un caso en que el centro de gravedad está fuera del cuerpo.

Llámase base de sustentación a la superficie de apoyo o al polígono que circunscribe a los puntos de apoyo.

En la figura 108 la base de sustentación de la mesa es el polígono ABCD; la del cono apoyado sobre ella es todo el círculo de base.

En ambos casos hay equilibrio porque el peso P del cono cae dentro de su base de sustentación y el peso total P₁ del cono y la mesa cae dentro del polígono ABCD.

Fig. 107.—Equilibrio estable. El centro de gravedad está fuera del cuerpo.

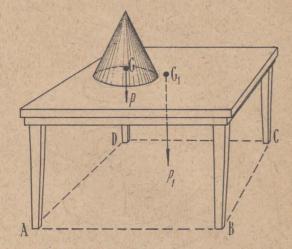


Fig. 108.—Equilibrio estable de un sistema de cuerpos apoyados.

Además, siendo los planos de apoyo horizontales, sus reacciones son verticales, constituyendo con el peso, en cada caso, un sistema de fuerzas iguales y contrarias.

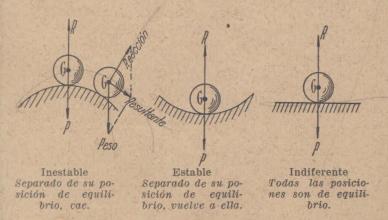


Fig. 109.—Equilibrio de un cuerpo apoyado.

Los criterios de estabilidad son los ya enunciados. En la figura 109 tenemos tres casos de equilibrio con una esfera apoyada sobre superficies adecuadas. En estos casos el apoyo se reduce a un punto

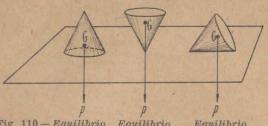


Fig. 110.— Equilibrio Equilibrio Equilibrio estable inestable indiferente

La figura 110 muestra un cono apoyando sobre un plano horizontal, realizando los tres casos de equilibrio.

Cuando la base de sustentación no es un punto, se llama momen-

to de estabilidad, al producto del peso del cuerpo por su distancia al punto más próximo del perímetro

En la figura 111 el producto del peso P por la distancia *OM* mide el momento de estabilidad.

A la posición de equilibrio inestable corresponde momento nulo (el peso pasa por un punto del perímetro de sustentación).

Un caso interesante de equilibrio se tiene apoyando un prisma en un plano inclinado, en el cual se ha colocado un pequeño taco de madera para evitar que se deslice bajo la acción de la componente del peso paralela al plano (fig. 112).

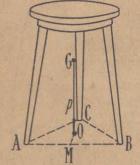


Fig. 111.—Momento de estabilidad $= P \times OM$.

Dicho taco produce una reacción que se compone con la reacción normal del plano, dando una resultante igual y de sentido contrario al peso.

Aumentando la inclinación del plano, llega un momento en que la vertical del centro de gravedad pasa por el punto M; entonces está en la posición límite de estabilidad.

Un pequeño au-

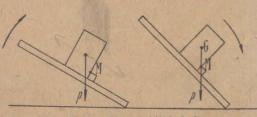


Fig. 112.—Limite de estabilidad de un cuerpo apoyado.

mento de inclinación produce el vuelco del prisma.

En los cuerpos inhomogéneos, formados por partes de dis-

tinto peso específico, el centro de gravedad no coincide con el centro de figura, dando lugar a hechos paradógicos.

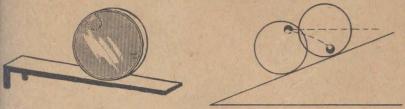


Fig. 113-Cilindro lastrado que asciende solo por el plano inclinado.

El disco de la figura 113, aparentemente homogéneo, pero convenientemente lastrado de modo que el centro de gravedad está próximo al borde, sube por el plano inclinado AB si se lo coloca en posición adecuada. En realidad, el centro de gravedad desciende.

§ 34.—Determinación experimental del centro de gravedad o baricentro.

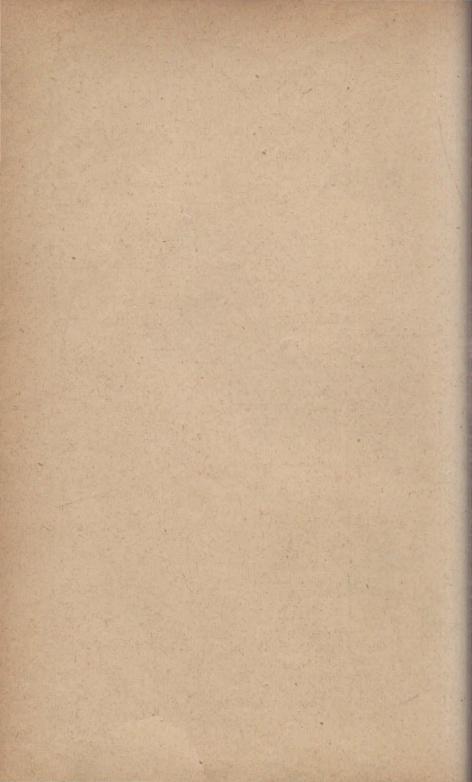
Hemos visto en el § 33 que un cuerpo suspendido de un punto O queda en equilibrio cuando la

N G G

Fig. 114.—Esquema de la determinación experimental de la posición del centro de gravedad.

vertical que pasa por el centro de gravedad G contiene al punto de suspensión.

Puede, entonces, determinarse la posición del baricentro G suspendiendo al cuerpo sucesivamente por dos puntos y marcando ambas verticales


en las posiciones de equilibrio. Su intersección da la posición del centro de gravedad (figs. 114 y 115).

Las posiciones de las verticales que pasan por los puntos O y O' se marcarán sobre el cuerpo con ayuda de una plomada. Así quedarán fi-

Fig. 115.—Determinación experimental de la posición del centro de gravedad.

jadas las rectas OM y O'N, cuya intersección es G.

CAPÍTULO IV

CINEMÁTICA

§ 35.—Cuerpo rígido.—Todos los cuerpos se deforman bajo la acción de las fuerzas que sobre ellos actúan, dando lugar, en su interior, al nacimiento de reacciones elásticas.

Así, una columna de acero se acorta por efecto de las cargas que sostiene, originando en su interior reacciones elásticas, que, en conjunto, producen la reacción total, igual y contraria a la resultante de las cargas sostenidas.

Un riel se deforma al pasar la rueda de una locomotora, y la rueda, a su vez, sufre deformaciones en la parte que apoya sobre el riel.

Los cuerpos reales, por más resistentes que parezcan, sufren deformaciones por efectos de las fuerzas que se les aplican, Las distancias entre sus diversos puntos cambian por esa causa, complicándose por ello el estudio, tanto del equilibrio, como del movimiento.

Consideraremos en lo que sigue, y a fin de simplificar la exposición, que siempre operamos con cuerpos rígidos, es decir, con cuerpos ideales que no sufren deformaciones elásticas, y que, por lo tanto, conservan su forma y dimensiones iniciales.

§ 36.—1.—Movimiento.—Cuando observamos que los puntos de un cuerpo cambian de lugar a medida que transcurre el tiempo decimos que el cuerpo está en movimiento.

Para comprobar que los puntos de un cuerpo cambian de lugar, hay que referir su posición a la de ciertos puntos fijos que se toman como términos de comparación.

El cambio de las distancias de un punto del cuerpo dado a los puntos fijos de referencia implica su movimiento. En vez de tomar puntos aislados es común referir el movimiento a sistemas de rectas o planos. Así, al ver caer un cuerpo verticalmente apreciamos su altura sobre el piso del salón en que estamos. La variación de la distancia de los puntos del cuerpo al piso y el mantenimiento de sus distancias a las paredes del salón, nos permite decir que cae verticalmente.

Si el movimiento no fuera vertical, variarían a la vez la

altura de cada punto y sus distancias a las paredes.

En cambio, si el cuerpo se moviera (como en el caso de una bola de billar) sobre una mesa horizontal, su altura permanecería invariable, pero sus distancias a los bordes de la mesa cambiarían, lo mismo que sus distancias a las paredes.

Por la variación de las distancias a dos rectas (bordes de la mesa del ejemplo), o de las distancias a 3 planos que se cortan en un punto, como el piso y dos paredes de un salón, se puede constatar el movimiento de los puntos de un cuerpo.

Las rectas o los planos tomados como base para verificar el movimiento constituyen el sistema de referencia empleado.

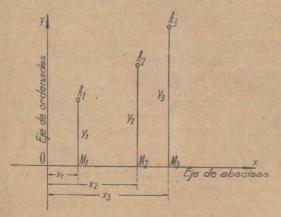


Fig. 116.—Posición de tres puntos referida a un sistema de ejes coordenados en el plano.

caso del movimiento del centro de una esfera que rueda sobre un plano horizontal. Tomando como sistema de referencia el formado por dos rectas O X, O Y, per-

2.—Sistema de referencia. — Coordenadas. — Analicemos el

Tomando como sistema de referencia el formado por dos rectas O X, O Y, perpendiculares, podemos determinar las posiciones A¹, A², A³, del centro A de la esfera, en tres instantes dados, mediante las correspondientes abscisas y ordenadas referidas a O X y O Y como un par de ejes

de coordenadas cartesianas.

Estas son: Para
$$A_1$$
 : $Y_1 = A_1 M_1$ $X_1 = 0 M_1$, A_2 : $Y_2 = A_2 M_2$ $X_2 = 0 M_2$, A_3 : $Y_3 = A_3 M_3$ $X_3 = 0 M_3$

Con la ayuda de las coordenadas cartesianas puede estudiarse en forma precisa cualquier movimiento, tanto cuando el punto se desliza sobre un plano, horizontal o no, como cuando se mueve en el espacio.

En este último caso hay que usar como sistema de referencia un grupo de 3 planos, que se cortan en un punto, y que determinan, por lo

tanto, un ángulo triedro.

Habrá, por tanto, un triedro de referencia con tres planos y tres aristas concurrentes en un punto O.

La figura 117 muestra uno de estos triedros de referencia. Las rectas OX, OY, OZ son los ejes coordenados, generalmente perpendiculares entre sí, lo mismo que los planos que ellos determinan.

Para fijar la posición de un punto A se determinan sus coordenadas:

$$X = ON; Y = MN; Z = AM$$

La figura muestra que Z=AM es la distancia de A al plano XOY, que X=ON es igual a la distancia de A al plano ZOY y, finalmente, que Y=MN=AL es la distancia de A al 3er. plano de referencia.

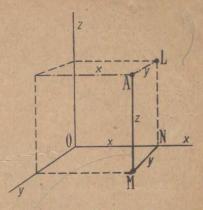


Fig. 117.—Posición de un punto referida a tres ejes coordenados en el espacio.

3. Trayectoria de un punto. — Si imaginamos reunidas por una línea todas las posiciones ocupadas por un punto que se mueve, tenemos su trayectoria.

Moviendo rápidamente un trozo de carbón encendido o una lamparilla eléctrica, se verá, por efecto de la persistencia de las imágenes en la retina, una línea o una banda luminosa contínua de la que podrá inferirse la forma aproximada de la trayectoria de cada punto.

Trayectoria es la línea determinada por las sucesivas posiciones del punto móvil.

Así es que podemos hablar de trayectorias rectilíneas, circulares, elípticas, parabólicas, etc.

§ 37. Traslación. — Un cuerpo realiza un movimiento de traslación cuando se desplaza de modo que una recta AB, que une dos cualesquiera de sus puntos, se mantiene paralela a sí misma en todas sus posiciones, tales como A'B' y A"B" (fig. 118).

Las trayectorias AA'A" y BB'B" de dos puntos cualesquie-

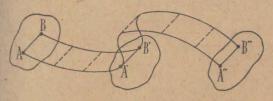


Fig. 118.—Traslación de un cuerpo rigido.

ra A y B son líneas de igual forma, y que, por tanto, se las puede hacer coincidir super pon i éndolas (trayectorias congruentes).

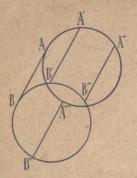


Fig. 119. — Traslación circular.

El caso más simple lo constituye la traslación rectilínea en la que AA'A" y BB'B" son rectas paralelas, y en la que todos los puntos recorren segmentos de igual longitud.

Un vagón de ferrocarril, moviéndose sobre un tramo recto de vía, realiza este úl-

timo tipo de movimiento.

En la figura 119 se ha representado un movimiento de traslación circular, en el que los puntos de una recta AB describen circunferencias iguales.

El segmento AB va ocupando sucesivamente las posiciones A'B', A"B", A"B", manteniéndose paralelo a sí mismo.

Todos los puntos del cuerpo a que pertenecen A y B describen circunferencias iguales en este tipo de traslación.

§ 38.—Rotación.—Cuando un cuerpo rígido se mueve de tal modo que durante el movimiento permanecen fijos dos de

sus puntos, y, por lo tanto, la recta E E' que los une, se dice que está animado de un movimiento de rotación.

En este movimiento cada punto del cuerpo describe una circunferencia situada en un plano perpendicular a la recta E E', llamada eje de rotación.

Los radios r₁, r₂, r₃ de las circunferencias descriptas por los puntos A, B, C de un cuerpo en rotación, son sus respectivas distancias al eje E E' (fig. 120).

En este movimiento, todos los radios O₁A: O₂B: O₃C giran ángulos iguales.

$$AO_1A' = BO_2B' = CO_3C' = \alpha$$

Un plano que pase por el eje, tal como el EE'A, describe el mismo ángulo α

que cualquier radio.

La Tierra realiza alrededor de su eje un movimiento de rotación; los radios de los paralelos, lo mismo que los planos meridianos, giran en cada hora un ángulo 15º (360º en 24 horas).

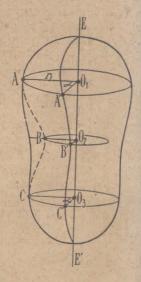


Fig. 120.—Rotación del cuerpo rigido.

§ 39.—Movimientos compuestos.

1.-En general, los movimientos de los cuerpos no son ni

traslaciones ni rotaciones simples, sino combinaciones de ambos movimientos.

Cuando la rueda de un vagón marcha sobre un tramo recto de riel, se combina la rotación de sus puntos alrededor del respectivo eje y traslación de éste, manteniéndose paralelo a sí mismo.

2. Movimiento polar, o rotación alrededor de un punto.— Combinando varias rotaciones alrededor de ejes que pasan por un punto O, se tiene un movimiento que se caracteriza por el hecho de que cada punto del cuerpo se mueve sobre una superficie esférica, cuyo radio es su distancia al centro o polo O.

A este movimiento se lo llama movimiento polar o rota-

ción alrededor de un punto.

§ 40.—Trayectoria y sistema de referencia.—La forma de la trayectoria, lo mismo que las demás características del movimiento, dependen esencialmente del sistema de refe-

rencia elegido.

Viajando en un vagón de ferrocarril podemos ver uno de sus focos de luz con sus puntos *en reposo* en relación a las paredes del mismo, ya que sus distancias a ellos son invariables. Pero un observador que ve la misma luz desde el andén de una estación y que instintivamente toma como sistema de referencia el piso en que se apoya y planos ligados a él, dirá, con toda razón, que el foco de luz se mueve, junto con el vagón.

El movimiento de un cuerpo que vemos caer verticalmente sobre la tierra, cambia si lo suponemos referido a un sistema fijo respecto al centro del Sol, ya que la rotación y la trasla-

ción de la tierra se combinan con su movimiento.

Más complicada aún sería la trayectoria de los puntos del cuerpo si lo refiriéramos a un sistema de ejes pasando por tres estrellas fijas, pues habría que considerar el movimiento del Sol con relación a ellas.

Aunque a veces se llama movimiento absoluto al referido a una terna de ejes ligada al cielo de las estrellas fijas, debemos establecer que en realidad sólo podemos apreciar movimiento respecto del cielo de estrellas fijas, llamadas así porque parecen no modificar sus posiciones relativas.

Los movimientos que estudiemos serán siempre movimientos relativos, referidos, cuando no se indique otra cosa, a un sistema de ejes en reposo con respecto al observador.

§ 41.—Medida del tiempo.—1. Día sideral.—La unidad para la medida del tiempo se ha elegido en base al movimiento de la tierra alrededor de su eje.

Este movimiento se nos pone de manifiesto por la rota-

ción aparente de los astros.

El punto que ocupa el observador sobre la superficie de la tierra, determina con el eje de rotación de la misma un plano llamado m e r i d i a n o d e l l u g a r. En su movimiento aparente, todos los astros pasan sucesivamente por dicho meridiano.

El intervalo de tiempo transcurrido entre dos pasos superiores (1) consecutivos de una estrella por el meridiano de un lugar, se llama: día sideral o día estelar (2).

Como en rigor la tierra es la que gira, el día sideral da la medida del tiempo en que la Tierra cumple una vuelta completa sobre su eje.

Esta unidad de tiempo se acepta como rigurosamente

constante.

A BOOK TANK ALL TYPE & TO

2.—Día Solar verdadero, es el tiempo que transcurre entre dos pasos consecutivos del centro del Sol por el meridiano de un lugar.

Su duración es siempre mayor que la del día sideral debido a que la Tierra está, además, animada de un movimiento de traslación.

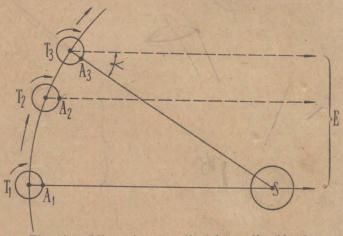


Fig. 121.—Diferencia entre dia solar y dia sideral.

⁽¹⁾ A la latitud de Buenos Aires, para la mayor parte de las estrellas sólo es visible su paso superior por el meridiano; pero las hay circumpolares, que se ven pasar dos veces en el día, y para las cuales hay que referirse al paso de mayor altura o superior.

⁽²⁾ En rigor, la duración del día estelar depende de la declinación de la estrella. La designación "Sideral" corresponde más precisamente al día referido al paso del punto vernal o equinoccio de primavera. Prácticamente, sus duraciones se toman como iguales y se confunden sus nombres.

Sea T, una posición de la tierra, en el instante en que el observador ubicado en A, comprueba el pasaje del Sol S y una cierta estrella E por su meridiano (fig. 121).

Cuando la tierra ha girado 360° sobre su eje, también se ha trasladado a T., y el observador en su nueva posición A. comprueba el pasaje de la estrella (prácticamente ubicada en el infinito) por su meridiano. Ha transcurrido un día sideral.

Sin embargo, el Sol no volverá a pasar por el mismo meridiano hasta

que la tierra llegue a T_q , habiendo girado un ángulo a 360° + α .

Ahora ha transcurrido un día solar verdadero.

3.—Día solar medio.—La duración del día solar verda-

dero cambia en el transcurso del año.

Se considera por ello un día solar medio, cuya duración representa un promedio de la de todos los días solares verdaderos de un año.

En realidad, se determina el día solar medio por el paso por el meridiano de un astro ficticio llamado Sol medio, que

da la misma duración para todos los días solares.

4.—Segundo solar medio.—El día se divide en 24 horas, la hora en 60 minutos y el minuto en 60 segundos.

En caso necesario se utilizan también fracciones decima-

les de segundo.

Esta división se aplica a los distintos días definidos, dando lugar a intervalos de igual nombre, pero de distinta duración.

Llamaremos, pues, segundo de tiempo solar medio a la 86400 ava parte del día solar medio.

Esta es la unidad utilizada en la física.

- 5.—Equivalencias.
 - 1 día solar medio = 86 400 seg. de tiempo solar medio = 1,0027379 días siderales = 1 día sideral + 3min. 56,555 seg. siderales.
 - 1 día sideral = 86 164,091 seg. de tiempo solar medio = 1 día solar medio — 3 min. 55,909 seg. solares medios.

Abreviaturas: hora = h. minuto = min.

segundo = s. o seg.

Nota. — Se tendrá especial cuidado en no utilizar el acento o doble acento, que deben emplearse exclusivamente para minutos y segundos de

§ 42.—Movimiento de un punto.—Vamos a referirnos al movimiento de un único punto. Sea P1 su posición inicial e imaginemos que en el transcurso del tiempo recorre una cierta trayectoria representada por la curva O P1, P2, P3, P4, P.

Fig. 122.—Trayectoria de un punto móvil.

Llamamos espacio a la longitud de camino recorrido a partir de un punto O fijado como origen. Midiendo los espacios recorridos y los tiempos empleados en recorrerlos, podremos establecer la ley del movimiento, es decir, ecuaciones que nos

permitirán calcular la posición del móvil sobre su trayectoria

en un instante cualquiera.

Llamaremos e₁, e₂, e₃, e₄, e, las longitudes (espacios) correspondientes a los caminos OP₁, OP₂, OP₃, OP₄, OP, y t₁, t₂, t₃, t₄, t, los instantes en los cuales el móvil pasa por dichos puntos.

§ 43. - Movimiento uniforme.

1.—Si observamos que los espacios recorridos en intervalos iguales de tiempo, tomados a partir de cualquier posición, son iguales, decimos que el movimiento es uniforme.

En nuestro ejemplo debe verificarse:

$$\frac{e_1}{t_1} = \frac{e_2}{t_2} \dots = \frac{e_4}{t_4} = \frac{e_4 - e_3}{t_4 - t_3} = \frac{e_3 - e_2}{t_3 - t_2} = \dots = \text{constante}$$

para que el movimiento sea uniforme.

Esta constante, que representa el espacio recorrido en la unidad de tiempo con movimiento uniforme, se llama velocidad (velocidad numérica).

$$=\frac{e}{t}$$
 [2]

Ejemplo: De un móvil se han anotado los siguientes espacios y tiempos correspondientes:

Verificar si el movimiento es uniforme y, en ese caso, calcular la velocidad.

Respuesta: es uniforme: v = 4 m/seg.

De la definición de velocidad deducimos la fórmula:

$$e = v \cdot t$$
 [3]

que permite calcular el espacio recorrido en función de la velocidad y del tiempo.

2.-Leves del movimiento uniforme:

De lo dicho se deduce fácilmente que el movimiento uniforme se caracteriza por las siguientes leyes:

1º) La velocidad es constante.

$$V = Const.$$
 [4]

2º) El espacio recorrido es proporcional al tiempo (fórmula [3]).

3.—Unidad de velocidad.

La unidad de velocidad será el cociente de las unidades de longitud y de tiempo; resulta así la velocidad expresada en:

que se leen, respectivamente: metro por segundo; centímetro por segundo; kilómetro por hora; etc.

Nota. - En navegación se usa el nudo =

$$=\frac{1 \text{ milla marina}}{\text{hora}}=\frac{1852 \text{ m}}{\text{hora}}$$

4. -Problemas:

1º) Expresar la velocidad 60 Km/hora en m/seg. y en em/seg.

$$60 \frac{\text{Km}}{\text{hora}} = 60 \frac{1000 \text{ m}}{3600 \text{ seg}} = 16,66 \text{ m/seg} = 1666 \frac{\text{cm}}{\text{seg}}$$

2º) Un móvil recorre con movimiento uniforme 265 kilómetros en 4 horas. Expresar su velocidad en Km/hora; m/seg y cm/seg.

$$v = \frac{e}{t} = \frac{265 \text{ Km}}{4 \text{ h}} = 66,25 \frac{\text{Km}}{\text{h}} = 66,25 \frac{1000 \text{ m}}{3600 \text{ seg}} = 18,4 \frac{\text{m}}{\text{seg}} = 1840 \frac{\text{cm}}{\text{seg}}$$

3º) ¿Qué espacio recorre en 24 horas de navegación un barco cuya velocidad media es de 45 Km/hora?

$$e = vt = 45 \times 24 \text{ Km} = 1080 \text{ Km}$$

4º) ¿Cuánto tiempo tarda la luz en llegar desde un faro hasta un avión que navega a 27 Km? (velocidad de la luz: 300000 Km/seg).

$$t = \frac{e}{v} = \frac{27~Km}{300000~Km\,|\, seg} = 0,\!00009~seg.$$

5.—Representación gráfica.—Las leyes enunciadas pueden ser representadas en gráficos cartesianos, como se ha-

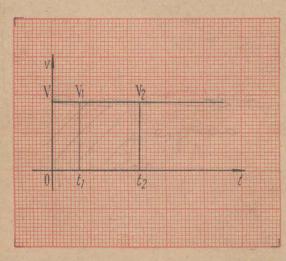


Fig. 123.—Representación gráfica de la velocidad en el movimiento uniforme.

ce corrientemente con las ecuaciones, en matemáticas.

Para la primera ley representaremos la velocidad (ordenadas) e n función del tiempo (abscisas) (fig. 123).

Resultará una recta paralela al eje del tiempo, pues, a cualquier abscisa corresponde la misma ordenada (valor constante de la velocidad).

En este gráfi-

co, el área comprendida entre el eje ot, la recta v, y las ordenadas correspondientes a dos tiempos t_1 y t_2 (marcada en la figura), representa el espacio recorrido por el móvil en dicho intervalo de tiempo.

Es decir:

$$e = e_2 - e_1 = v (t_2 - t_1)$$
 [5]

Nota. — El área del rectángulo representa el espacio en una escala gual al producto de las escalas empleadas en cada eje.

Si en el eje ot, un centímetro representa 2 seg y en el Ov, un cente representa 10 m/seg, cada cm^2 del gráfico representará 20 metros =2 seg \times 10 m/seg.

Para representar la segunda ley, elegimos como ejes: Ot, que representa el tiempo, y Oe, que representa el espacio, fig. 174)

Resultará una recta que pasa por el origen, en la cual las ordenadas de sus puntos representan los espacios recorridos en los tiempos representados por las abscisas correspondientes.

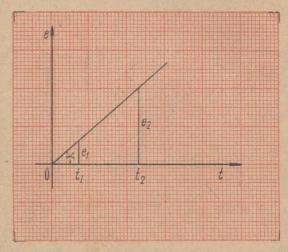


Fig. 124.—Representación gráfica del espacio en el movimiento uniforme.

La inclinación de la recta, medida por el cociente $\frac{e}{t} = tg\alpha$

caracteriza la velocidad.

6.—Vector velocidad. — Hemos definido y operado hasta ahora con la velocidad numérica. En rigor, la velocidad es una magnitud vectorial cuyo módulo es la velocidad numérica. Su dirección es la de la tangente a la trayectoria y su sentido el del movimiento en el punto de tangencia, (fig. 125).

En el caso particular de que la trayectoria sea una recta, el vector velocidad coincide con la trayectoria y el movimiento

se llama rectilíneo uniforme.

Se demuestra que la velocidad es un vector, analizando el movimiento de un punto P y el de sus proyecciones P_x y P_y sobre dos ejes coordenados. Es fácil comprobar que las velocidades v_x y v_y están representadas por vectores, que son las proyecciones del vector v, es decir q u e l a s v e

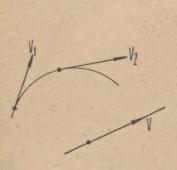


Fig. 125. - Vector velocidad

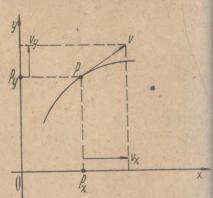


Fig. 125 a.—Componentes del vector velocidad.

locidades de las proyecciones son iguales a las proyecciones de la velocidad. Y ésta es la propiedad característica de las magnitudes vectoriales (fig. 125 a).

TABLA V

VELOCIDADES EN METROS POR SEGUNDO

Hombre caminando	1,70
Corredor a pie	9,00
Automóvil (promedio en carreras comunes)	33,33 (120 Km h
Avión	100 (360 Km h
Sonido en el aire a 15°	340
Bala de fusil (veloc. inicial)	400
Punto del Ecuador terrestre (rota-	463

Tierra alrededor del Sol (traslación)	$30.000 \left(30 \frac{\text{Km}}{\text{seg}} \right)$
Sistema solar hacia Hércules	$20.000 \left(20 \frac{\text{Km}}{\text{seg}} \right)$
Luz en el vidrio	$200.000.000 \; \left(\; 200.000 \; \frac{\mathrm{Km}}{\mathrm{seg}} \; \right)$
Luz en el vacío y ondas electromag- néticas	300.000.000 (300.000 Km)

§ 44.—Movimiento variado - Velocidad media.—Cuando los espacios recorridos por el móvil no son proporcionales a los tiempos, se dice que realiza un movimiento variado.

Hay muchos tipos de movimiento variado y sólo estudia-

remos algunos en particular.

En el movimiento variado, carece de sentido la noción de

velocidad establecida para el movimiento uniforme.

Llamaremos velocidad media al cociente del espacio recorrido en un intervalo cualquiera por el tiempo empleado en recorrerlo.

Si e₁ y e₂ son los espacios correspondientes a los tiempos t₁ y t₂, el cociente:

$$v_{m} = \frac{e_{2} - e_{1}}{t_{2} - t_{1}}$$
 [6]

define la velocidad media en el intervalo $t_1 + t_2$.

Se comprende que si el móvil estuviera animado de movimiento uniforme de velocidad $v_{\rm m}$ habría recorrido el mismo espacio en ese intervalo de tiempo. Por lo tanto, la velocidad media de un movimiento variado es la velocidad del móvil que con movimiento uniforme recorrería el mismo espacio total en el mismo intervalo de tiempo.

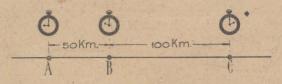


Fig. 126.

Así, por ejemplo: supongamos un vehículo que partiendo de la localidad A en el instante $t_{\rm o}=9$ horas, pasa por la loca-

lidad B, situada a 50 Km, en el instante $t_1=10$ horas, y por la C, situada a 150 Km, en el instante $t_2=14$ h. (fig. 126). Su velocidad media entre B y C será:

$$v_m = \frac{e_2 - e_1}{t_2 - t_1} = \frac{(150 - 50) \text{ Km}}{(14 - 10) \text{ h}} = 25 \frac{\text{Km}}{\text{hora}}$$

y entre A y B:

$$v_m = \frac{e_1 - e_0}{t_1 - t_0} = \frac{50 - 0}{10 - 9} = 50 \frac{Km}{hora}$$

Tomando tiempos de pasaje por puntos intermedios, habríamos determinado otras velocidades medias, que, en general, serán diferentes entre sí.

§ 45. Velocidad instantánea. — Para definir la velocidad instantánea en un punto P de la trayectoria, consideraremos que a partir de dicho punto el movimiento se hace uniforme;



Fig. 127.—Velocidad instantánea en el movimiento variado.

a la velocidad de este movimiento uniforme la llamaremos velocidad en el punto P, o velocidad instantánea en P.

Supongamos una esfera que desciende libremente por un plano inclinado; la experiencia indica que su movimiento es variado.

Si después de recorrer un trayecto cualquiera sobre el plano inclinado continúa su movimiento sobre un plano horizontal, comprobaremos que la trayectoria de su centro es una línea recta PP₁P₂, recorrida con movimiento prácticamente uniforme. A la velocidad de este movimiento la llamaremos velocidad instantánea del movimiento de caída en el punto P, (fig. 127).

Aunque esta definición de velocidad instantánea en el movimiento variado es simple, adolece de ciertos defectos que hacen preferible el siguiente camino para definirla.

Sean P_1 y P_2 dos posiciones de un móvil correspondientes a los tiempos t_1 y t_2 . De acuerdo con la definición anterior, la velocidad media entre P_1 y P_2 será el cociente del arco P_1 - P_2 por el tiempo t_2 — t_1 .

Si tomamos el punto P_2 cada vez más pró ximo a P_1 , disminuirán correspondientemente la longitud del arco y el intervalo de

tiempo.

Si acercamos indefinidamente el segundo punto al primero, el cociente:

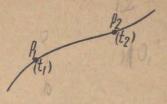


Fig. 128.

 $\frac{arco\ P_1\ P_2}{t_2-t_1}$ tiende a un valor fijo, que llamaremos velocidad instantánea en el punto P_1 , y definiremos así: es el valor del cociente $\frac{e_2-e_1}{t_2-t_1}$ cuando e_2 se acerca indefinidamente a e_1 y, por lo tanto, el intervalo t_2-t_1 se hace muy pequeño. (1)

Supongamos que el móvil pasa por P_1 , a las 10 horas y que en el primer segundo subsiguiente recorre 12 metros, es decir, su velocidad media es 12 m/s.

Si realizamos nuevas experiencias tomando intervalos de tiempo cada vez más pequeños, tanto como permitan nuestros medios experimentales, los sucesivos cocientes irán diferiendo cada vez menos, acercándose a un valor límite, p. ej., 10 m/seg que llamaremos velocidad instantánea o velocidad en el punto P₁.

En la práctica, suponiendo que se trate de medir la velocidad de un vehículo, será suficientemente aproximado tomar como velocidad instantánea la velocidad media en un intervalo de ½ ó 0,1 segundos siempre que no se elija precisamente el instante en que se produce una variación muy brusca de velocidad.

Debemos notar que la velocidad media definida como cociente de la longitud del arco de trayectoria por el tiempo em-

pleado en recorrerla, corresponde al concepto de velocidad numérica media.

15. 140

Si, en cambio, se divide la longitud de la cuerda P₁P₂ por el intervalo de tiempo, se obtiene la **velocidad vectorial media**, que se representa por un vector cuya dirección es la de la cuerda, y cuyo sentido va de P₁ a P₂, pero cuyo módulo, en general, no será igual al de la velocidad numérica. Cuando el movimiento es rectilíneo, ambos valores coinciden.

(1) Con rigor debe decirse: es el límite del cociente:

$$\frac{\mathbf{e}_2 - \mathbf{e}_1}{\mathbf{t}_2 - \mathbf{t}_1} = \frac{\triangle \mathbf{e}}{\triangle \mathbf{t}}$$

cuando ∆t tiende a cero y se escribe:

$$v = \underset{\triangle t \to 0}{\text{Lim.}} \quad \frac{\triangle e}{\triangle t} = \frac{de}{dt}$$

La velocidad vectorial instantánea tiene la dirección de la tangente a la trayectoria en el punto considerado, y su módulo es igual a la velocidad numérica.

§ 46.—Movimiento rectilíneo uniformemente acelerado.

1.—Cuando la velocidad de un móvil aumenta en el transcurso del tiempo, se dice que su movimiento es acelerado; si

disminuye, se llama retardado.

El caso más simple de un movimiento rectilíneo variado es aquel en que las variaciones de velocidad son proporcionales a los tiempos, es decir, que en tiempos iguales la velocidad experimenta variaciones iguales. Se lo llama uniformemente variado.

Aceleración es el aumento de velocidad en la unidad de tiempo.

Si v_1 y v_2 son las velocidades en los instantes t_1 y t_2 , la

aceleración es:

$$\mathbf{a} = \frac{\mathbf{v}_2 - \mathbf{v}_1}{\mathbf{t}_2 - \mathbf{t}_1} \tag{7}$$

Si $v_2 > v_1$ la velocidad crece con el tiempo, el valor de a es positivo y el movimiento se llama acelerado.

Si v₂ < v₁, la velocidad decrece con el tiempo y el movi-

miento se llama retardado.

Sea, p. ej., un móvil cuyas velocidades son: $v_1 = 3$ m/seg, $v_2 = 9$ m/seg, $v_3 = 18$ m/seg, en los instantes $t_1 = 2$ seg, $t_2 = 4$ seg, $t_3 = 7$ seg; se observa que:

$$\frac{v_2-v_1}{t_2-t_1} = \frac{v_3-v_2}{t_3-t_2} = \frac{v_3-v_1}{t_3-t_1} = \text{Constante} = 3 \frac{\text{m}|\text{seg}}{\text{seg}}$$

luego el movimiento es uniformemente acelerado y su velocidad aumenta 3 m/seg en cada segundo.

2.—Unidad de aceleración.—La unidad de aceleración resulta de dividir la unidad de velocidad por la de tiempo. Así usaremos corrientemente las unidades de aceleración:

que se leen: metro por segundo cuadrado o centímetro por se-

gundo cuadrado. En el ejemplo anterior es: $a = 3 \frac{m}{seg^2}$.

3.—Velocidad.—Si la velocidad es nula en el instante t=0, dado su valor v en el instante t, la aceleración es:

$$a = \frac{v}{t}$$
, luego:
 $v = at$ [8]

Si para t=0 la velocidad posee ya un valor v_0 , la velocidad v en el instante t, que llamamos velocidad final, será:

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{at} \tag{9}$$

en virtud de la definición de aceleración: $a = \frac{v - v_0}{t}$

Ejemplos:

a) Un móvil cuya velocidad inicial es de 2 m/seg se mueve con aceleración a 0,3 m/seg. ¿Cuál será su velocidad al cabo de 10 seg?

Respuesta:

$$v = 2 \text{ m/seg} + 0.3 \text{ m/seg}^2 \times 10 \text{ seg} = 5 \text{ m/seg}$$
 (1)

b) Un tren que marcha a 10 m/seg se frena y detiene en 20 seg; suponiendo aceleración constante, calcular su valor.

Respuesta:

$$a = \frac{(0 - 10) \text{ m/seg}}{20 \text{ seg}} = -0.5 \text{ m/seg}^2$$

§ 47.—Representación gráfica de la velocidad.—
Tomando e j e s coordenados para representar e l tiempo y la velocidad, obtendremos como representación gráfica, una recta inclinada con respecto a los ejes.

Si la velocidad inicial es nula (para t = o; v = o), la recta pasará por el origen de coordenadas v

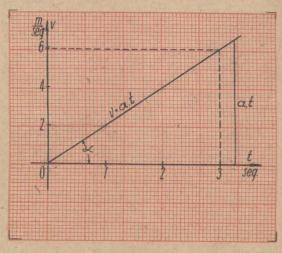


Fig. 130.—Gráfico de la velocidad en el movimiento uniformemente acelerado sin velocidad inicial.

$$\frac{m}{\text{seg}^2}$$
 . $\text{seg} = \frac{m}{\text{seg}}$

⁽¹⁾ En todos los cálculos numéricos debe operarse con los símbolos de las unidades de acuerdo con las réglas del álgebra. En este caso:

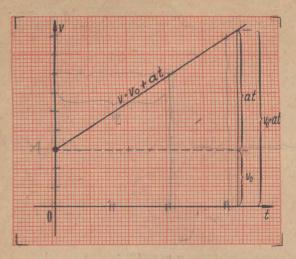


Fig. 131.—Gráfico de la velocidad en el movimiento uniformemente acelerado con velocidad inicial.

corresponde a la representación de la ecuación v = a.t, análoga a la conocida ecuación y = ax; correspondiendo la abscisa x y la ordenada y, respectivamente, al tiempo t y a la velocidad v.

En la figura 130 se ha representado el caso de un movimiento en que a = 2 m/seg².

La aceleración

$$a = \frac{v}{t}$$
, está

representada por la tangente del ángulo α que la recta forma con el eje de los tiempos.

Si la aceleración es negativa (movimiento retardado), la velocidad será:

$$v = v_o - at$$

y estará representada por una recta descendente (pendiente negativa) (figura 132).

§ 48.—Espacio en el movimiento uniformemente acelerado.—Al estudiar el movimiento uniforme, vimos que en el gráfico de la velocidad el espacio recorrido estaba representa-

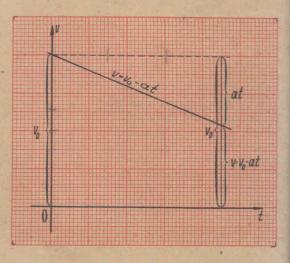


Fig. 132.—Gráfico de la velocidad en el movimiento uniformemente retardado.

do por el área del rectángulo limitado por las ordenadas correspondientes a los instantes extremos t₁ y t₂, el eje Ot y la rec-

ta representativa de la ecuación v = constante.

Vamos ahora a demostrar que también en el caso de un movimiento uniformemente variado, el área encerrada entre las ordenadas de los instantes extremos, el eje ot y la recta AH, representan el valor del espacio recorrido.

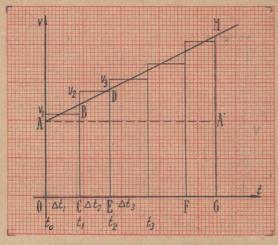


Fig. 133.—Cálculo del espacio en el movimiento variado.

Sustituyamos el movimiento, cuya velocidad está representada por la recta AH, por un conjunto de movimientos uniformes de velocidades v₁, v₂ v₃ . . . (fig. 133).

Si calculamos la suma de productos:

$$e=v_1\Delta t_1+v_2\Delta t_2+\dots$$
 siendo $\Delta t_1=t_1\multimap 0;\ \Delta t_2=t_2-t_1\dots$ etc.;

obtendremos el espacio recorrido por un móvil cuya velocidad hubiera ido variando a saltos; y vemos que este espacio está representado por la suma de las áreas de los pequeños rectángulos ${\rm Ov_1BC},\,{\rm Cv_2DE}\dots$ etc. Si disminuímos indefinidamente la duración de los intervalos Δt , nos iremos acercando cada vez más al valor del espacio recorrido por el móvil que se mueve con movimiento uniformemente acelerado, y gráficamente, a la superficie del trapecio OAHG, cuya área representará para los Δt suficientemente pequeños, el valor del espacio que buscamos.

De la figura deducimos que esta área es:

$$S = \frac{OA + HG}{2} \cdot OG$$
 [10]

o sea

$$e = \frac{v_0 + v}{2}$$
. t [11]

teniendo en cuenta que $v = v_0 + at$ y reemplazando:

 $e = \frac{v_0 + v_0 + at}{2} \cdot t$

luego:

$$e = v_0 \cdot t + \frac{1}{2} a t^2$$
 [12]

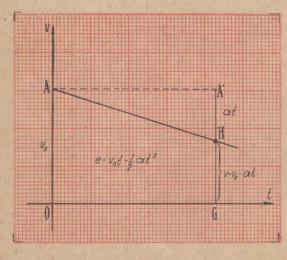


Fig. 134.

Se podría haber calculado el área considerando que es la suma del rectángulo

 $OAA'G = v_0t$ y el triángulo $AA'H = \frac{1}{2}at^2$

Si la velocidad inicial es nula $(v_0 = 0)$, el espacio esta-

rá representado por el segundo miembro:

$$e = \frac{1}{2} at^2$$
 [13]

Cuando el movimiento es uniformemente retardado, el mismo razonamiento nos lleva a las fórmulas (ver figura 134):

$$\mathbf{v} = \mathbf{v}_0 - \mathbf{at} \tag{14}$$

$$e = v_0 t - \frac{1}{2} at^2$$
 [15]

En rigor, puede utilizarse exclusivamente las fórmulas con signo positivo, teniendo presente que en cada caso se aplicará la aceleración con su signo (positivo si el movimiento es acelerado y negativo si es retardado).

§ 49.—Leyes del movimiento uniformemente acelerado. Las leyes del movimiento uniformemente acelerado toman una expresión simple si nos referimos al caso de movimientos con velocidad inicial nula. En tal caso, de las fórmulas:

$$v = at$$
 [8]
 $e = \frac{1}{2} at^2$ [13]

deducimos:

1º) La velocidad es proporcional al tiempo.

2º) El espacio es proporcional al cuadrado del tiempo em-

Refiriéndonos al caso general en que la velocidad inicial es distinta de cero, estas leyes deben enunciarse así: cualine,

- 1º) Las variaciones de velocidad son proporcionales a los tiempos $(v - v_0 = at)$.
- 2º) El espacio recorrido está representado por una ecuación de 2º grado con respecto al tiempo. ($\frac{1}{2}$ at² + v₀t = e).

Aplicaciones.

a) Un móvil parte del reposo y se mueve con aceleración 2 m/seg2. Calcular la velocidad adquirida y el espacio recorrido en 5 seg.

$$V=at=2\times 5~m/seg^2$$
 , seg. $=10~m/seg$
$$e=\ \ ^1\!\!\!/_2~at^2=\ \ ^1\!\!\!/_2~2\times\ (5)^2~\frac{m}{seg^2}~.~seg^2=25~m$$

b) Calcular la aceleración del movimiento de un cuerpo que recorre 32 metros en 4 seg con movimiento uniformemente acelerado, siendo su velocidad inicial vo = 10 m/seg.

$$a = \frac{2 (e - v_0 t)}{t^2} = \frac{2 \cdot (32m \cdot -10 \times 4 - \frac{m}{seg} seg)}{16 seg^2}$$

$$a = \frac{2 (32 - 40)}{16} \frac{m}{seg^2} = -\frac{2 \times 8}{16} \frac{m}{seg^2} = -1 \frac{m}{seg^2}$$

luego, el movimiento es retardado de aceleración $\frac{1 \text{ m}}{\text{seg}^2} = \frac{100 \text{ cm}}{\text{seg}^2}$

§ 50.—Representación gráfica del espacio.

Si se eligen como coordenadas el tiempo y el espacio, el gráfico correspondiente al movimiento será una parábola. (fig. 135 a, b y c).

Ejercicio: comprobar que los gráficos siguientes corresponden a los

movimientos indicados en cada uno.

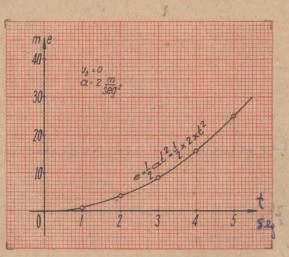


Fig. 135 a.—Gráfico del espacio en un movimiento uniformemente acelerado sin velocidad inicial.

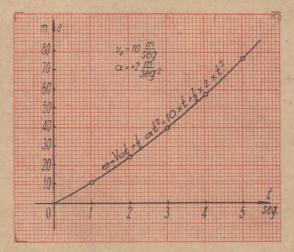


Fig. 135 b.—Gráfico del espacio en un movimiento uniformemente aceterado con velocidad inicial.

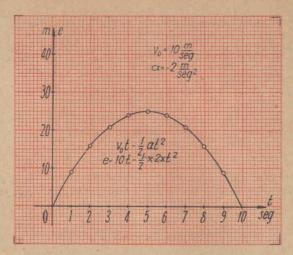


Fig. 135 c.—Gráfico del espacio en un movimiento uniformemente retardado.

§ 51.—Movimiento rectilíneo variado en general.

Un movimiento rectilíneo en el que la velocidad no aumenta, o dis-

minuye cantidades iguales en tiempos iguales, es un movimiento variado. La definición de aceleración da da anteriormente no vale para este caso. Pueden determinarse aceleraciones medias en diversos intervas de velocidad por los tiempos en que se producen.

Tomemos, por ejemplo, un movimiento variado tal que su gráfico de la velocidad sea el indicado en la figura 136.

Sean v₁ y v₂ las velocidades correspondientes a los instantes t¹ y t².

A VI V2 B

Fig. 136.—Aceleración instantúnea en el gráfico de la velocidad.

La aceleración media entre t1 y t2 es:

$$a_{m} = \frac{v_{2} - v_{1}}{t_{2} - t_{1}}$$
 [16]

De la observación del gráfico, resulta que, llamando β al ángulo que la cuerda MN forma con la paralela al eje Ot y teniendo en cuenta que $v_2-v_1=NK$ y $t_2-t_1=MK$, la aceleración media es:

$$a_{m} = \frac{NK}{MK} = tg\beta$$
 [17]

Si el intervalo ($t_2 - t_1$) disminuye, los puntos M y N se acercan y la cuerda MN tiende a convertirse en la tangente geométrica a la curva

AMNB en el punto M.

Llegado este caso, la aceleración media se convierte en la aceleración instantánea correspondiente al tiempo t_i . Su valor estará dado por la tangente trigonométrica del ángulo α que la recta MS forma con la dirección del eje Ot.

Su expresión matemática es análoga a la dada para la velocidad

 $(\S 45)$:

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} (1)$$

y en el gráfico: a = tgα

En cuanto al espacio recorrido entre dos instantes como t₁ y t₂, está representado por el área t₁ MNt₂ (Se demuestra razonando como § 48).

§ 51 a.—Movimiento curvilíneo uniformemente variado. La definición de aceleración dada para el movimiento rectilíneo uniformemente variado vale sólo para la aceleración tangencial o aceleración numérica del mo-

Fig. 137.—Trayectoria curvilinea.

vimiento curvilíneo.

Las fórmulas de la velocidad y del espacio son también válidas refiriéndose a la velocidad numérica y a la longitud de los caminos curvilíneos recorri-

dos.

En rigor, el estudio de este movimiento, lo mismo que el de un movimiento variado cualquiera sobre una curva OP₁P₂P₃P₄, debe hacerse teniendo en cuenta el concepto vectorial de las velocidades y las aceleraciones

y las reglas que rigen su composición y descomposición.

§ 52. Caída de los cuerpos en el vacío.—Como ejemplo de movimiento uniformemente acelerado, podemos citar el de la caída libre en el vacío. Para pequeñas alturas de caída y cuerpos de gran densidad podemos admitir que la caída en el aire es también un movimiento uniformemente acelerado.

La aceleración de caída libre la llamaremos aceleración de la gravedad, y la designaremos con la letra g. El valor de esta aceleración, determinado por procedimientos que más adelante indicaremos (ver § 86), es diferente en los distintos lugares de la tierra, aumentando desde el ecuador hacia los polos, pero es el mismo para todos los cuerpos, como puede compro-

⁽¹⁾ At y Av representan un par cualquiera de valores correspondientes de diferencias de velocidad y de intervalos de tiempo.

barse con el tubo de Newton, en el cual se provoca la caída en el vacío de cuerpos de muy diverso peso (fig. 138). Se ha convenido en tomar como valor normal el que correspondería a la latitud 45° y al nivel del mar, esto es:

$$g_{\rm n} = 980,665 \frac{{
m cm}}{{
m seg}^2} \simeq 981 \frac{{
m cm}}{{
m seg}^2} = 9,81 \frac{{
m m}}{{
m seg}^2}$$

Los valores límites llegan a:

$$g_0 = 978,046 \frac{\text{cm}}{\text{seg}^2}$$
 (Ecuador)

$$g_{90} = 983,232 \frac{\text{cm}}{\text{seg}^2}$$
 (Polos)

En Buenos Aires, puede tomarse con suficiente aproximación:

$$g = 980 \frac{\text{cm}}{\text{seg}^2}$$

Fig. 138.—
Haciendo vacio en el tubo de Newton,
se comprueba
que varios
cuerpos pequeños, de peso
muy diferente,
caen con igual
aceleración.

En unidades inglesas se encontrará citado el valor:

$$g = 32,174 \frac{\text{pie}}{\text{seg}^2}$$

La comprobación de que el movimiento de caída es uniformemente acelerado, podemos realizarla tomando espacios y tiempos de caída. Comprobaremos que:

$$\frac{\mathbf{e}}{\mathbf{t}^2}$$
 = constante

lo cual concuerda con las fórmulas dadas para este tipo de movimiento.

Como el valor de la aceleración de la gravedad es relativamente elevado, las velocidades adquiridas en la caída libre son rápidamente crecientes y ello dificulta las mediciones de los tiempos.

Para estudiar movimientos acelerados más lentos, se realiza la experiencia provocando la caída por un plano inclinado.

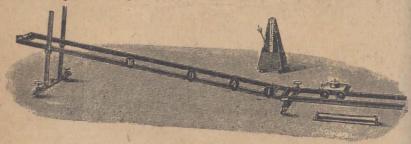


Fig. 139.—Comprobación de las leyes de caida en el plano inclinado.

A medida que disminuye la inclinación del plano, irá disminuyendo la aceleración del movimiento. Fácil será comprobar entonces que el movimiento es uniformemente acelerado, pues se obtendrán espacios recorridos proporcionales a los cuadrados de los tiempos.

La figura 139 muestra una forma práctica de disponer la experiencia. Un carrito desciende por un plano inclinado; los puntos marcados 1, 4, 9, 16 son los de partida para que llegue al pie del plano en los tiempos 1, 2, 3, 4, marcados por las osci-

laciones de un metrónomo.

Para comprobar la ley de las velocidades se hace de modo que después de caer por el plano inclinado, el cuerpo se desplace sobre un plano horizontal en el cual el movimiento puede considerarse uniforme en la primera parte de su recorrido.

Dejándolo entonces caer desde alturas tales que correspondan a tiempos 1, 2, 3, etc., se medirán en el plano horizon-

tal velocidades: v. 2v. 3v ... etc.

Aplicaciones:

a) ¿Qué caminos recorre un cuerpo en 1, 2, 3, y 4 seg. de caída libre, suponiendo g=9.8 m/seg²? Representar gráficamente el espacio en función del tiempo.

Aplicando: e = ½ gt² resulta: e, = 4,9 m $e_{.} = 19.6 \text{ m}$ $e_3 = 44,1 \text{ m}$ $e_1 = 78.4 \text{ m}$

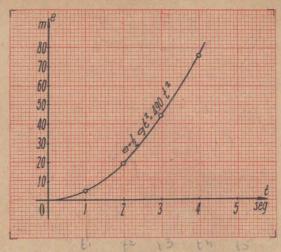


Fig. 140.—Espacio recorrido en la caida libre en el vacio.

b) ¿Qué tiempo tarda en caer un cuerpo desde 50 metros de altura? De la fórmula del espacio resulta:

$$t = \sqrt{\frac{2e}{g}} = \sqrt{\frac{100 \text{ m}}{9.8 \text{ m/seg}^2}} = 3.2 \text{ seg}$$

c) Si se lanza hacia arriba un cuerpo con velocidad 40 m/seg, ¿con qué clase de movimiento sube? Calcular la altura máxima $h_{\rm m}$ que alcanza y representar el espacio y velocidad.

Respuesta:

I) El movimiento es uniformemente retardado:

$$v = v_0 - gt = (40 - 9.8 \cdot t) - \frac{m}{seg}$$
 $e = v_0 t - \frac{1}{2} gt^2 = (40 \cdot t - \frac{1}{2} \cdot 9.8 \cdot t^2) m$

II) Cálculo de la altura máxima: Cuando el cuerpo alcanza la altura máxima, su velocidad es nula y habrá tardado un tiempo t_m tal que:

$$v = v_0 - gt_m = 0$$

de donde se deduce:

$$t_{\mathbf{m}} = \frac{\mathbf{v_0}}{g}$$

reemplazando en la fórmula del espacio:

$$h_{m} \cdot = v_{o}t_{m} - \frac{1}{2} g \cdot t_{m}^{2}$$

$$h_{m} = v_{o} \left(\frac{v_{o}}{g}\right) - \frac{1}{2} g \left(\frac{v_{o}}{g}\right)^{2} = \frac{v_{o}^{2}}{g} - \frac{1}{2} \frac{v_{o}^{2}}{g}$$

$$= \frac{v_{o}^{2}}{g} (1 - \frac{1}{2}) = \frac{1}{2} \frac{v_{o}^{2}}{g} = \frac{v_{o}^{2}}{2g}$$

reemplazando valores:

$$h_{\rm m} = \frac{40^2}{2 \times 9.8} = \frac{800}{9.8} \, {\rm m} = 81.6 \, {\rm m}$$

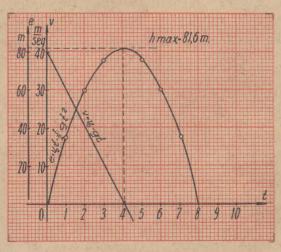


Fig. 141.—Espacio y velocidad en el movimiento de un cuerpo lanzado hacia arriba.

d) ¿Cuánto tarda en llegar a la altura h = 20 m un cuerpo lanzado hacia arriba con velocidad inicial $v_{\rm o}=30~{\rm m/seg?}$

Partiendo de la fórmula del espacio

 $e = v_0 t - \frac{1}{2} gt^2$: ordenándola como ecuación de 2º grado en t se tiene:

$$\frac{1}{2} gt^2 - v_0t + e = 0$$

Aplicando la fórmula para la solución de la ecuación general de segundo grado:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

resulta:

$$t = \frac{+ v_o \pm \sqrt{v_o^2 - 4 \times \frac{1}{2} g \times e}}{2 \times \frac{1}{2} g}$$

$$t = \frac{v_o \pm \sqrt{v_o^2 - 2 g e}}{g}$$

$$t = \frac{30 \pm \sqrt{900 - 2 \times 9.8 \times 20}}{9.8} = \frac{30 \pm 22.5}{9.8}$$

Resultan dos valores $t_1=0.766$ seg y $t_2=5.36$ seg que corresponden a los dos pasos del móvil por dicha altura; el primero durante el ascenso y el segundo durante su descenso después de haber pasado por la altura máxima.

Si la altura dada hubiera sido mayor que la altura máxima, la cantidad subradical habría sido negativa, es decir, hubiéramos obtenido raíces imaginarias.

§ 53.—Composición de movimientos.—Cuando un cuerpo se desplaza sobre otro cuerpo que también se mueve, los movimientos de ambos se com-

binan.

Así, un vehículo que se traslada sobre un camino, compone su movimiento con el de la tierra que lo arrastra, de manera que su velocidad y su trayectoria con respecto a la tierra no son las mismas que resultarían refiriéndolas a un sistema ligado al centro del Sol.

La velocidad del vehículo con respecto al suelo es su velocidad relativa, v

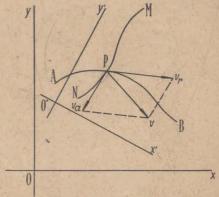


Fig.142. — Composición de velocidades.

La velocidad del punto de la tierra en que está el vehículo en el instante considerado, es la velocidad de arrastre, va.

Componiendo ambas velocidades se obtendrá la velocidad total v.

Si O'(x'y') es el sistema de ejes coordenados al cual referimos el movimiento de un punto P, y este sistema se mueve con respecto al O(xy) que suponemos fijo, la velocidad relativa v. es la del punto P con respecto al sistema móvil (fig. 142).

La velocidad de arrastre es la que el punto tendría respecto del sistema fijo, si lo suponemos fijo con respecto al sistema móvil; es decir, es la velocidad de ese punto del sistema móvil.

La velocidad resultante, será la suma geométrica de ambas y, en general, tendrá que ser determinada en c a d a i n sta n t e .

En el estudio de la trayectoria aplicaremos el principio de superposición de movimientos (de Galileo), que podemos enunciar así:

Cuando el movimiento de un punto es resultante de otros dos simultáneos, la posición que ocupa al cabo de un tiempo t es la misma que ocuparía si ambos movimientos se hubieran cumplido sucesiva e independientemente uno de otro y cada uno de ellos durante el mismo tiempo t.

Así, por ejemplo: si P₀, M₁, M₂, M₃, M₄ y P₀, N₁, N₂, N₃, N₄, son las sucesivas posiciones que un punto móvil P ocuparía según cada uno de dos movimientos simultáneos, su trayecto-

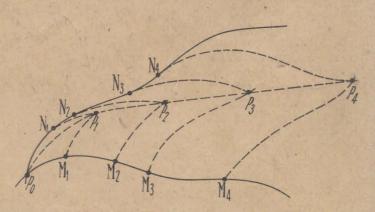
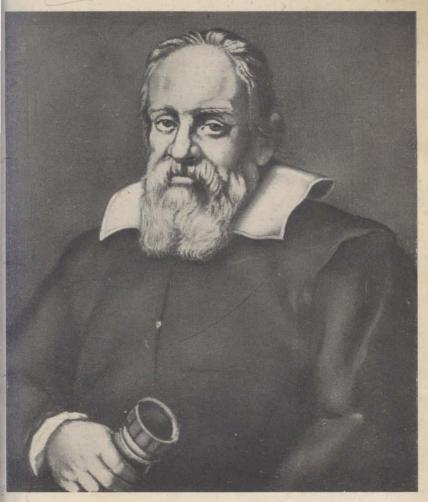



Fig. 143.—Composición de movimientos.

ria real será $P_0P_1P_2P_3P_4$, determinada según el principio de superposición enunciado.

GALILEO (1564-1642)

Fundador del método experimental, es el verdadero iniciador de la fisica moderna.

Realizó estudios de medicina en su juventud; pero su espiritu fué pronto atraído por la matemática, la física y la astronomía, en cuyo campo encontró la posibilidad de conocimientos más precisos.

Descubrió las leyes de la caida de los cuerpos y del movimiento del péndulo; estableció el principio de inercia y el de superposición de movimientos, bases de la mecánica.

Construyó el primer termómetro e inventó el anteojo astronómico.

Defendió ardientemente la teoría de Copérnico sobre el movimiento de los planetas, sosteniendo la existencia de la rotación de la tierra. Por ello fué sometido a juicio por el tribunal de la Inquisición, debiendo abjurar públicamente de sus ideas.

Se lo considera el iniciador del método científico tal como se lo practica actualmente.

BIBLIOTECA NACIONAL DE MAESTROS Ejemplos:

a) Un pasajero recorre el tren con movimiento uniforme de velocidad $v_r=1,2$ m/seg en la dirección de su movimiento y el tren recorre un tramo rectilíneo con velocidad 12 m/seg. Calcu-

lar la velocidad total del pasajero.

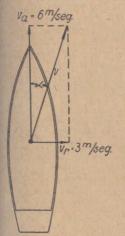


Fig. 144.

Respuesta:

$$v = v_a + v_r = 13,2 \text{ m/seg.}$$

Si se mueve en sentido contrario:

$$v = v_a - v_r = 10.8 \text{ m/seg.}$$

b) Sobre la cubierta de un barco y en dirección normal a la de su movimiento se mueve un cuerpo con velocidad 3 m/seg. Calcular la velocidad total si la del barco es 6 m/seg.

Respuesta:

$$v = \sqrt{v_{p^2} + v_{a^2}} = \sqrt{36 + 9} = \sqrt{45} = 6,7 \frac{m}{seg}$$

Si se desea la dirección de la velocidad resultante, puede calcularse el

ángulo a, que en este caso es tal que: $tga = \frac{v_r}{v_a} = \frac{3}{6} = 0$. 5; de la tabla: $\alpha = 26^{\circ}30'$.

c) Un bote cruza un canal de 30 m de ancho, moviéndose perpendicu-

larmente a la dirección de la corriente. Llega a la orilla opuesta habiéndose desplazado 14 m en la dirección de la corriente. Si la velocidad de ésta es 2 m/seg, calcular las velocidades relativa y total del bote.

Los espacios y las velocidades forman triángulos semejantes:

$$\frac{30}{14} = \frac{v_r}{v_a}$$

$$\frac{30}{30} = \frac{v_r}{v_a}$$

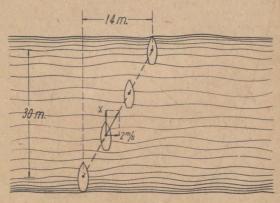


Fig. 145.

$$v_r = \frac{60}{14} = 4,28 \text{ m/seg}$$

$$v = \sqrt{v_0^2 + v_a^2} = \sqrt{4,28^2 + 4^2} = 4,7 \text{ m/seg}$$

d) Una embarcación se dirige desde la localidad A hasta otra B situada a 16 Km aguas arriba y regresa hasta A. Calcular el tiempo total sabiendo que la velocidad de la embarcación es de 4 m/seg y la de la corriente 0,8 m/seg.

de A a B:
$$v_1 = 4 - 0.8 = 3.2 \text{ m/s}$$
 .: $t_1 = \frac{16000}{3.2} = 5.000 \text{ seg}$
de B a A: $v_2 = 4 + 0.8 = 4.8 \text{ m/s}$.: $t_2 = \frac{16000}{4.8} = 3.333 \text{ seg}$

 $t = t_1 + t_2 = 8.333 \text{ seg} = 2 \text{ horas, } 18 \text{ min, } 53 \text{ seg.}$

§ 54.—Composición de aceleraciones.—Hemos referido en el párrafo anterior cómo se componen las velocidades instantánea relativa y de arrastre y sólo nos hemos planteado, para simplificar, el caso de un movimiento sobre el plano (referido a dos ejes cartesianos).

En los casos más generales de movimiento, será necesario referirse a ternas de ejes y tendremos también una terna móvil O' (x'y'z') y otra que

suponemos fija O(x, y, z).

Se demuestra, apoyándose en el principio de superposición enunciado más arriba, que los problemas más complejos de composición de movimientos pueden resolverse ateniéndose a las siguientes reglas de carácter general:

- 1º) La posición de un punto del móvil en un instante dado queda determinada en la forma que indica el principio de superposición de movimientos.
- 2º) La velocidad instantánea total o absoluta es la sum a geométrica de las velocidades relativa y de arrastre. (fig. 146).
- 3°) Si el movimiento de arrastre es de traslación, la aceleración instantánea es la suma geométrica de las ace-

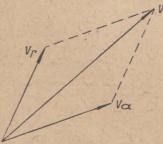


Fig. 146.—Paralelogramo de las velocidades.

$$\overrightarrow{a} = \overrightarrow{a}_r + \overrightarrow{a}_s$$

arrastre (fig. 147).

40) Si el movimiento de arrastre es de rotación o rototraslatorio, hay que agregar un vector a llamado aceleración complementaria o de Coriolis, cuyo valor es proporcional a la velocidad angular de la rotación instantánea de arrastre y cuya

Nota.—Si va = o (aguas en reposo) el tiempo total sería t=8000 seg; si va = v_r el tiempo total sería $t=\infty$ ya que la embarcación no podria avanzar en la corriente.

dirección es perpendicular al eje de dicha rotación y al vector velocidad relativa.

$$\frac{\rightarrow}{a} = \frac{\rightarrow}{a_r} + \frac{\rightarrow}{a_a} + \frac{\rightarrow}{a_c}$$

Todo esto habría que tenerlo en cuenta para estudiar en forma completa el caso aparentemente simple del ejemplo del vehículo que se traslada sobre la Tierra, del § 53, ya que la terna fija al suelo se traslada y gira con respecto a la terna fija al centro del Sol.

En general, las reglas de la composición de movimientos permiten también su descomposición; repitiendo las descomposiciones puede llegarse a considerar cual-

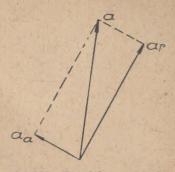
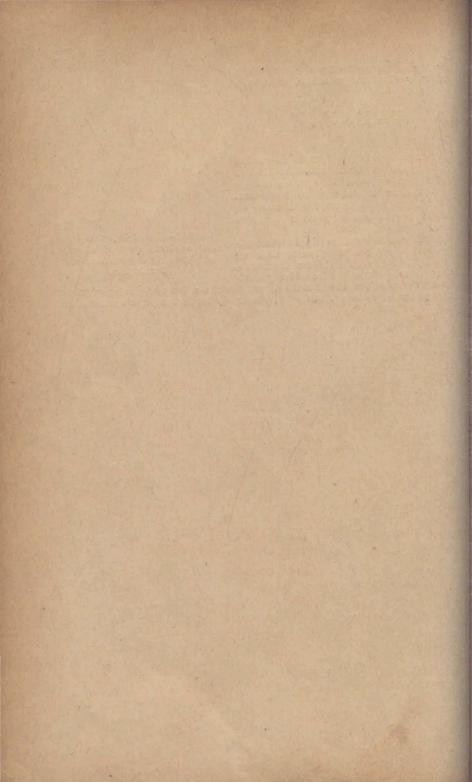



Fig.147.—Paralelogramo de las aceleraciones si el movimiento de arrastre es una traslación.

quier movimiento como resultante de muchos otros, los que pueden elegirse arbitrariamente, es decir, que el problema de la descomposición tiene in linitas soluciones.

CAPÍTULO V

DINÁMICA

§ 55.—Objeto.—La dinámica se propone el estudio del

ovimiento en base a las causas que lo producen.

En el capítulo de cinemática sólo interesaban los distintos pos de movimiento, las trayectorias o las leyes espacio-tempoales independientemente de las causas o los modos como podían brenerse esos movimientos. En la estática nos ocupamos de las uerzas y su equilibrio.

Ahora nos proponemos un problema más completo: dado n cuerpo y las fuerzas que sobre él actúan, dar las ecuaciones el movimiento y, recíprocamente, dado el movimiento deducir

s fuerzas que lo han producido.

La solución de este problema tiene origen en los trabajos e Galileo (1563 - 1672); Huyghens (1629 - 1695), y Newton 1643 - 1727), y como resumen quedan los principios que conomos como principios de la dinámica, cuyos enunciados y alcans fueron debidamente aclarados por Newton.

- § 56.—Principios de la dinámica.—Newton estableció tres rincipios:
 - 1º) Principio de inercia
 - 2º) Principio de masa
 - 3º) Principio de acción y reacción.
- 1º) Principio de inercia. Todo cuerpo perseera en el estado de reposo o de moimiento rectilíneo y uniforme en que e encuentra, a menos que alguna fuera actúe sobre él y lo obligue a camiar ese estado.

Este principio no es intuitivo. Por lo menos, desde Arisiteles hasta Galileo se creyó que *todo* movimiento era debido la acción de fuerzas. Sin embargo, un análisis más profundo de los hechos nos permite comprender que las experiencias que parecen contradecirlo, no cumplen estrictamente la condición que impone el final del enunciado. Es decir: todo cuerpo se conserva en reposo o continúa moviéndose con movimiento rectilíneo y uniforme si no actúa ninguna fuerza sobre él, y es precisamente ésta la condición de difícil realización experimental.

Imaginemos una esfera lanzada a rodar sobre un plano horizontal. Aparentemente no actúan fuerzas sobre ella o por lo menos las que actúan parecen estar en equilibrio: el peso por una parte y la reacción del plano, igual y de sentido contrario, por la otra. Sin embargo, otras experiencias nos dicen que, en este caso, actúa además una fuerza que se opone al movimiento, debida al "rozamiento" de la esfera contra el plano. Este no es nulo aunque la esfera ruede sin deslizarse, va que si no tubiera "rozamiento" (adherencia entre la esfera y el plano), tampoco aquélla podría rodar. Y sucede lo que ya imaginamos: el movimiento es rectilíneo pero no uniforme, y después de recorrer un cierto espacio la esfera se detiene. Repitamos la experiencia puliendo cada vez mejor las superficies en contacto (las de la esfera y el plano) y observaremos que a igualdad de velocidad inicial, va aumentando el alcance, es decir, nos acercamos más al movimiento uniforme.

Deducimos así que mejorando indefinidamente las condiciones experimentales, cuando pueda considerarse nulo el rozamiento, la esfera continuará moviéndose, y ya no rodando sino trasladándose con velocidad constante y en línea recta.

Recíprocamente diremos: cuando un cuerpo se traslada con movimiento rectilíneo y uniforme, todas las fuerzas que actúan sobre él están en equilibrio. Es decir, si un vehículo, por la acción de su motor, se mueve en línea recta y con velocidad constante, podemos afirmar que, en esas condiciones, la fuerza motriz equilibra exactamente a las causas que se oponen al movimiento (resistencia del aire, rozamientos, etc.).

Las condiciones ideales de ausencia total de fuerza no son

experimentalmente realizables.

2º) Principio de masa.—Todo cuerpo sometido a la acción de una fuerza, recibe una aceleración proporcional a su intensidad y de la misma dirección y sentido.

En este caso, de acuerdo con el principio de inercia, el cuerpo no podrá estar en reposo ni animado de movimiento rectilíneo uniforme. De modo que todo movimiento que no es al mismo tiempo rectilíneo y uniforme, será debido a la acción de una fuerza y estará caracterizado por una aceleración.

Newton, basándose en hechos experimentales, estableció la relación entre la fuerza que actúa y la aceleración que el

cuerpo recibe. Si la fuerza es constante en dirección, sentido e intensidad, la aceleración también lo será y para cada cuerpo encontraremos un valor constante de la relación entre las fuerzas y las aceleraciones que producen, al cual se designa con el nombre de masa (1).

Es decir:

$$\frac{F}{a} = \frac{F'}{a'} = \frac{F''}{a''} = \dots = \text{masa} = m$$
 [1]

Un caso particular de fuerza es el peso, bajo cuya acción se produce el movimiento de caída en que la aceleración constante, la hemos llamado g (aceleración de la gravedad). A esta fuerza podemos también aplicarle el principio de masa, y tendremos un medio de calcular las masas de los cuerpos.

$$m = \frac{P}{g}$$
 [2]

La fórmula:

$$F = m \cdot a$$
 [3]

es la expresión matemática más simple del principio de masa.

3º) Principio de acción y reacción.—Cuando un cuerpo ejerce una fuerza sobre otro, éste ejerce sobre el primero

una fuerza igual y contraria que se llama reacción.

Este principio es idéntico al que estudiamos en la estática (§ 13 a) y sólo cabe agregar que se aplica también a las acciones entre cuerpos en movimiento. Así, por ejemplo, si un cuerpo apoyado sobre un plano horizontal ejerce una fuerza igual a su peso, el plano ejerce sobre él una fuerza igual y contraria (reacción) (fig. 148).

Si el cuerpo se mueve sobre el plano, cualquiera sea su velocidad,

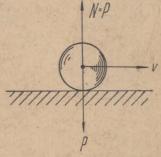


Fig. 148.—El peso se equilibra con la reacción del plano horizontal.

⁽¹⁾ Cuando se trata de velocidades grandes (el término de comparación es la velocidad de la luz = 300 000 Km./seg), se admite, de acuerdo con la teoría de la relatividad, que la masa no es constante, pues experimenta una variación que depende de la velocidad.

Fig. 149.—Las fuerzas de atracción entre dos cuerpos cualesquiera son iguales y contrarias.

subsistirán ambas fuerzas (ación y reacción) iguales y de sentido contrario.

Sabemos que todo cuerpo está sometido a la acción de su peso (atracción de la tierra); este principio nos dice que la misma fuerza es ejercida por el cuerpo sobre la

tierra, pero en sentido contrario, aun cuando no estén en contacto, tal es el caso de las atracciones entre los astros (fig. 149).

§ 56 a.—Se suele enunciar como otro principio de la dinámica el *principio de independencia de acción de las fuerzas* que está estrechamente vinculado al principio de masa y al cual Newton dió el carácter de Corolario de los anteriores, y se enuncia así:

Fig. 151.—Aparato para la comprobación del principio de independencia de acción de las fuerzas. Al golpear con el martillo, la esfera de la derecha que cae verticalmente y la de la izquierda lanzada horizontalmente llegan al suelo al mismo tiempo.

Si sobre un cuerpo actúan varias fuerzas, cada una de ellas produce la misma aceleración que si actuara sola, independientemente de las demás.

Esto significa que, dado el problema de determinar la aceleración producida por un sistema de fuerzas puede resolverse hallando la que produce su resultante o bien calculando las aceleraciones que produciría cada una de las fuerzas y sumándolas luego geométrica-

Si la fuerza F_1 produce la aceleración a_1 y la fuerza F_2 la aceleración a_2 , la resultante $F = F_1 + F_2$ producirá una aceleración

mente.

 $a = a_1 + a_2$ (suma geométrica) (figura 150).

§ 57.—Cálculo de masas.— De acuerdo con

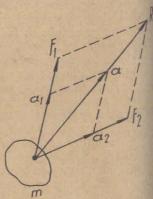


Fig. 150.—El paralelogramo de las accleraciones es semejante al de las fuerzas.

la fórmula [2], podemos calcular la masa de un cuerpo conociendo su peso, ya que se tiene

$$m = \frac{P}{q}$$

Corrientemente el peso se determina en balanza de platillos, es decir, comparándolo con el de las pesas, cuyo valor marcado es el peso normal, o sea el peso en el lugar de la Tierra en que la aceleración de la gravedad tiene su valor normal:

$$g_{\rm a} = 9,80665 \, \frac{\rm m}{{
m seg}^2}$$

Esto significa que se ha determinado el peso normal del cuerpo.

Bastará, pues, dividir ese valor por g para obtener la masa

$$m = \frac{P_n}{g_n}$$
 [4]

Si el peso se determina con un dinamómetro, se obtiene el peso en el lugar y la masa se calcula dividiendo por el valor local de g.

$$m = \frac{P}{g}$$
 [5]

Comparando [4] y [5], obtenemos la relación entre los pesos normal y local y las respectivas aceleraciones.

$$\frac{P}{P_n} = \frac{g}{g_n} \qquad [6]$$

§ 58.—Unidades de masa.—1. Unidad técnica.—Expresado el peso en Kgr y la aceleración de la gravedad en $\frac{m}{\text{seg}^2}$

se obtiene la masa en:

$$\frac{\text{Kgr}}{\text{m}|\text{seg}^2} = \frac{\text{Kgr.seg}^2}{\text{m}}$$

Para que el cociente $\frac{P}{g}$ sea igual a 1, los números que

miden P y g deben ser iguales. Por lo tanto, la masa será igual a 1 $\frac{\text{Kgr.seg}^2}{\text{m}}$, cuando el peso normal del cuerpo es

 $P_{\rm n}=9.80665~{\rm Kgr.}\colon$ Esta es la unidad técnica de masa.

2.—Unidad C. G. S. o absoluta.—Es más corriente en la física el uso del gramo-masa, que es la masa del cuerpo cuyo peso normal es un gramofuerza.

Usaremos en adelante la siguiente notación para distinguir el gramo fuerza del gramo masa, ya que, a pesar de tener el mismo nombre, corresponden a magnitudes físicas fundamentalmente diferentes:

Aplicaciones numéricas. — (Si en las aplicaciones no se desea expresar g_n con seis cifras exactas, puede tomarse el valor 9,81 m/seg. En Bs. As. se tomará g = 9,80 m/seg²).

 1^{0} Expresar en unidades C. G. S. y técnicas la masa de un cuerpo cuyo peso es $P_{n}=1~{\rm Kgr}.$

Respuesta:

a) en c. g. s. 1000 g pues pesa 1000 gr

b) en técnicas:
$$\frac{\mathrm{P}}{g} = \frac{1 \ \mathrm{Kgr \ seg^2}}{9.81 \ \mathrm{m}} = 0.102 \dots \frac{\mathrm{Kgr \ seg^2}}{\mathrm{m}}$$

2º) Sobre un vehículo que pesa 3 toneladas actúa una fuerza horzontal de 300 Kgr. Calcular la aceleración que recibe suponiendo nulos frotamientos.

Respuesta:

$$a = \frac{F}{m}; \quad m = \frac{P}{g}$$

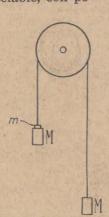
$$\therefore a = \frac{F}{P} g = \frac{300 \text{ Kgr}}{3.000 \text{ Kgr}} \cdot 9.81 \frac{m}{\text{seg}^2} = 0.981 \frac{m}{\text{seg}^2}$$

30) ¿Cuánto pesa un cuerpo que bajo la acción de una fuerza de 20 gr. se mueve con aceleración 2 cm/seg2?

$$P = mg$$
, $\therefore P = \frac{F}{a}g = \frac{0,020 \text{ Kgr}}{0,02 \text{ m}|\text{seg}^2} \cdot 9,81 \frac{m}{\text{seg}^2} = 9,81 \text{ Kgr}$

§ 59.—Comprobación del principio de masa. Máquina de Atwood.—La máquina de Atwood se utiliza para verificar algunas aplicaciones del principio de masa y estudiar la caída de os cuerpos.

Consta fundamentalmente de una polea iviana montada sobre cojinetes de muy oequeño rozamiento, por cuya garganta asa un hilo de peso despreciable, con pe-


sas en sus extremos. Una regla graduada, vertical, y de unos 2 metros, sirve para medir los desplazamientos de las pesas. En la parte superior una plataforma móvil con disparador mecánico, permite determinar con precisión el instante inicial del movimiento.

Un cronómetro, metrónomo, o péndulo agregado a la máquina servirá para medir los tiempos de caída.

Teoría.—Colocadas dos masas iguales M en los ex- Fig. 152a).—Esquetremos del hilo, el sistema ma de la maquina quedará en equilibrio.

Supongamos colocada una de las pesas en la parte superior, y sobre ella una masa adicional m, cuyo peso será p = mg. Si dejamos en libertad el sistema, la fuerza p, continua y constante, producirá un movimiento uniformemente acelerado del sistema formado por las dos masas M y la masa m (fig. 152).

En todo este razonamiento suponemos nula la masa de la polea y del hilo y nulos los frotamientos.

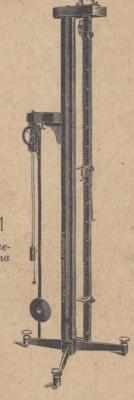


Fig. 152b).—Máquina de Atwood.

Aplicando el principio de masa (fórm. [3], § 56), la aceleración del movimiento será:

$$a = \frac{F}{masa} = \frac{p}{2 M + m} = \frac{m}{2 M + m} g$$
 [8]

Se comprende que siendo m mucho más pequeña que 2 M + m, la aceleración de caída será también mucho menor que g, y ello facilitará la medición de los espacios y los tiempos (en la práctica las masas M son de 50 a 100 g y m de 1 a 10 g).

Comprobaciones a realizar.—a) Leyes del movimiento de caída:

1°) Se miden los espacios recorridos en 1, 2, 3 unidades de tiempo (que serán o no iguales a 1 seg., según el instrumento para medir el tiempo de que se disponga), y se verifica que los espacios son proporcionales a 1, 4, 9, es decir, proporcionales a los cuadrados de los tiempos.

Conocido el tiempo empleado en recorrer un determinado

espacio e, se calcula la aceleración:

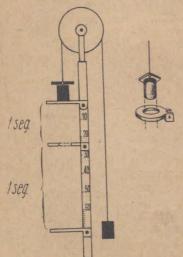


Fig. 153.—Método para medir la velocidad de caida al cabo de un segundo en la máquina de Atwood.

$$a=\frac{2e}{t^2}$$

deducida de la fórmula e = 1/2 at.

2º) Utilizando una masa adicional con aletas y un anillo que la detiene se comprueba la ley de las velocidades del siguiente modo: se coloca el anillo a una altura tal que retire la sobrecarga después de 1 seg de caída, y se mide el espacio que recorre en el primer segundo subsiguiente (figura 153).

Este valor será aproximadamente la velocidad del movimiento uniforme con que continúa el sistema en virtud del principio de inercia, después de suprimida la fuerza. Luego, se repite la operación, colocando el anillo de modo que retire la sobrecarga después de dos segundos de recorrido. La nueva velocidad resultará doble de la anterior, es decir, proporcional al tiempo de caída, o sea: v=at.

b) Verificación del principio de masa:

Se toman 3 sobrecargas iguales p = mg y se colocan primero dos de un lado y una en el otro (fig. 154). La fuerza que produce el movimiento es entonces (2 p + Mg) - (p + Mg) = p. La aceleración es:

$$\mathbf{a}_1 = \frac{\mathbf{m}}{2 \mathbf{M} + 3 \mathbf{m}} g$$

Midiendo el tiempo que tarda en recorrer una distancia determinada (o el espacio recorrido en la unidad de tiempo), se determina a₁.

Se repite la operación colocando las tres sobrecargas del mismo lado. Entonces la aceleración debe ser:

$$\mathbf{a}_2 = \frac{3 \, \mathbf{m}}{2 \, \mathbf{M} + 3 \, \mathbf{m}} \, g$$

es decir: triple de la aceleración a₁.

Una nueva medida de tiempo y camino recorrido permitirá obtener el valor a₂.

Dividiendo este segundo valor por el primero debe resultar:

$$\frac{a_2}{a_1} = 3$$

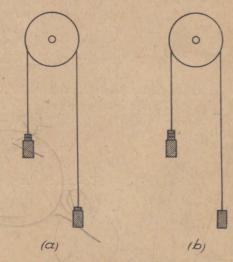


Fig. 154.—Método para comprobar el principio de masa.

Si la experiencia se realiza midiendo en cada caso el espacio recorrido en el primer segundo, el cociente de los espacios dará también la relación de las aceleraciones:

$$\frac{e_2}{e_1} = \frac{\frac{1}{2} a_2 t^2}{\frac{1}{2} a_1 t^2} = \frac{a_2}{a_1}$$

Este cociente resultará también igual a 3.

La causa principal de error en la máquina de Atwood estriba en que no es rigurosamente exacta la suposición de que los frotamientos son nulos ni es nula la masa de la polea. Por eso no se pretenderá que los valores de las aceleraciones obtenidos experimentalmente concuerden exactamente con los valores calculados con la fórmula [8]. Será siempre menor que p la fuerza actuante y, por lo tanto, la aceleración medida será menor que la calculada.

§ 60.—Unidades - Sistemas c. g. s. y técnico.

Un sistema de unidades se caracteriza por tres unidades fundamentales arbitrariamente elegidas, de las que se deducen las que corresponden a todas las demás magnitudes físicas, mediante las fórmulas que las vinculan.

1º) Sistema técnico o métrico.

Las Unidades fundamentales de este sistema son:

de longitud - metro (m)

de fuerza - Kilogramo (Kgr)

de tiempo - Segundo (seg)

Estas tres unidades están definidas en §§ 7, 14, 41. Unidades derivadas

Superficie m2

Volumen m³

Velocidad m seg

Aceleración m seg²

Masa Kgr. seg²

Las unidades derivadas también han sido ya definidas, en los capítulos sucesivos definiremos cada unidad al tratal la magnitud correspondiente.

2º) Sistema c, g. s. o absoluto.—Con este sistema se toman como fundamentales las unidades de longitud, masa y tiempo:

(g)

centimetro (cm)

segundo (seg)

que ya han sido definidas (§§ 8, 58).

Serán derivadas las unidades de:

gramo masa

superficie cm²

volumen cm³

velocidad em seg

aceleración cm seg²

La unidad de fuerza la deducimos aplicando el principio de masa:

 $f = m \cdot a$

si m = 1 y a = 1, resulta f = 1

o sea: que la unidad de fuerza será igual al producto de la unidad de masa por la unidad de aceleración.

Físicamente significa que la unidad de fuerza es la que le comunica a la unidad de masa la aceleración unidad. En el sistema c. g. s. se la llama dina.

Dina es la fuerza que aplicada al gra-

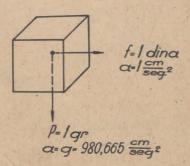


Fig. 155.—Dina y gramo fuerza

mo masa le comunica una aceleración de 1 cm/seg².

$$[f] = [m] \cdot [a] \cdot (a)$$

$$dina = 1 g \frac{cm}{seg^2}$$
[9]

§ 61.—Relaciones entre unidades.— Esta unidad de fuerza puede relacionarse con las de otros sistemas de unidades. En la práctica se utiliza como unidad de fuerza el gr que, como sabemos, es la milésima parte del Kgr. El gramo fuerza comunica al gramo masa la aceleración de la gravedad (caída libre), mientras que la dina, por definición, sólo le comunica una aceleración de 1 cm/seg², es decir, 980,665 veces menor. Por lo tanto, será:

Razonando de otro modo, decimos:

$$f = m$$
. a. 1 gr = 1 g × 980,665 $\frac{cm}{seg^2} = 980,665$ g $\frac{cm}{seg^2}$ 1 dina = 1 $\frac{g.cm}{seg^2}$

como:

1 gr = 980,665 dinas.

Es sencillo deducir que la unidad técnica de masa es igual a 9806,65 unidades c. g. s.

$$1 \frac{\text{Kgr. seg}^2}{m} = 9806,65 \text{ g}$$

Estos sistemas a que nos hemos referido son los más usuales; sin embargo, debe notarse que pueden idearse otros siste-

⁽¹⁾ El corchete significa unidad.

[f] significa unidad de fuerza;

[m] unidad de masa;

[a] unidad de aceleración.

$$(m_1 + m_2) v = m_1 v_1 + m_2 v_2$$
 [16]

de donde deducimos la velocidad final:

$$\mathbf{v} = \frac{\mathbf{m}_1 \, \mathbf{v}_1 + \mathbf{m}_2 \, \mathbf{v}_2}{\mathbf{m}_1 + \mathbf{m}_2} \tag{17}$$

En el caso de que las velocidades iniciales sean de distinto sentido, la cantidad de movimiento final será la diferencia de las iniciales, de modo que resulta:

$$v = \frac{m_1 v_1 - m_2 v_2}{m_1 + m_2}$$
 [18]

sentido de v, antes del choque.

En este caso, si $| m_1 v_1 | > | m_2 v_2 |$ resulta v > 0, lo que significa que ambos cuerpos se moverán en el

Si en cambio es $|m_1|v_1| < |m_2|v_2|$ resulta v < 0, o sea que la velodidad final tiene el sentido de va antes del choque.

El choque de cuerpos perfectamente inclásticos se realiza muy aproximadamente con arcilla blanda.

2. Si los cuerpos son perfectamente elásticos quiere decir, que una vez deformados vuelven a tomar la forma primitiva poniendo en acción fuerza iguales y de signo contrario a las que los deformaron.

El mecanismo del choque es el siguiente: al chocar, los cuerpos se deforman y la cantidad de movimiento que recibe uno de ellos la pierde el otro, como si fueran cuerpos inelásticos; luego ambos cuerpos recuperan su forma primitiva y vuelven a ganar o perder la misma cantidad de movimiento que ganaron o perdieron respectivamente en el primer pro-

Supongamos las dos esferas de la figura 159 perfectamente elás-ticas. Por lo anterior, al final del primer período ambas se mueven con la velocidad.

$$v = \frac{m_1 \ v_1 - m_2 \ v_2}{m_1 + m_2} \quad [18]$$

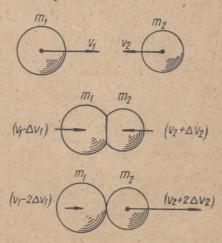


Fig. 159.—Fases del choque central de dos esferas elásticas.

de modo que si suponemos $v_1 > v > v_2$ la masa m_1 se mueve al final de este primer período con la velocidad:

$$v = v_1 - \Delta v_1$$

y la m2 con la misma velocidad

$$v = v_2 + \Lambda v_2$$
;

luego, las variaciones de velocidad experimentadas en este primer proceso son:

$$\Delta \mathbf{v}_1 = \mathbf{v}_1 - \mathbf{v}$$

$$\Delta \mathbf{v}_2 = \mathbf{v} - \mathbf{v}_2$$
[19]

Cuando los cuerpos recuperan su forma vuelven a experimentar la misma pérdida y ganancia, respectivamente, de velocidad; luego, la velocidades finales serán:

$$v_{1f} = v_1 - 2 \Delta v_1$$
 $v_{2f} = v_2 + 2 \Delta v_2$
[20]

Aplicando [19] en [20]

$$v_{1f} = v_1 - 2 (v_1 - v) = 2 v - v_1$$

$$v_{2f} = v_2 + 2 (v - v_2) = 2 v + v_2$$
[21]

y reemplazando v por su valor [18]

$$v_{1_{f}} = \frac{v_{1} (m_{1} - m_{2}) + 2m_{2} v_{2}}{m_{1} + m_{2}}$$

$$v_{2f} = \frac{2 m_1 v_1 - v_2 (m_1 - m_2)}{m_1 + m_2}$$

Fórmulas con las cuales se calculan las velocidades finales en finción de las velocidades iniciales y las masas de los cuerpos que chocan

Repitiendo el razonamiento para el caso de que las velocidades iniciales tengan el mismo sentido se llega a:

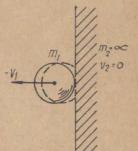
$$v_{1_{\rm f}} = rac{v_1 \ (m_1 - m_2) - 2m_2 \ v_2}{m_1 + m_2}$$
 $v_{2_{
m f}} = rac{2 \ m_1 \ v_1 + v_2 \ (m_1 - m_2)}{m_1 + m_2}$

Como aplicación simple de choque de cuerpos elásticos, imaginemo una esfera perfectamente elástica que choca normalmente contra un muro también elástico.

m₁ y v₁ la masa y velocidad de la esfera antes del choque. Además, podemos suponer para el muro:

$$m_2 = \infty$$

$$v_2 = 0$$


Aplicando la 1ª de las fórmulas [23]

$$v_{1\text{f}} = \frac{v_1\; (m_1-m_2) - 2m_2\; v_2}{m_1 + m_2}$$
 : dividiendo numerador y deno-

minador por m2

$$v_{1i} = \frac{v_1 \left(\frac{m_1}{m_2} - 1 \right) - 2 v_2}{\frac{m_1}{m_2} + 1}$$

y teniendo en cuenta los datos del problema:

$$\frac{m_1}{m_2} = 0 \qquad \qquad v_2 = 0$$

Fig. 160.-Choque normal entre una esfera y un muro perfectamente elásticos.

resulta:

 $v_{1f} = -v_1$ lo cual significa que la velocidad final es igual pero de signo contrario a la velocidad inicial; es decir, la esfera rebota.

Si el choque es oblicuo, solo se invierte la componente de la velocidad que es perpendicular al plano de choque y la esfera vuelve con igual velocidad pero formando con la pared un ángulo igual y de sentido contrario al que forma la velocidad de llegada.

§ 64. Densidad y peso específico. — Se llama densidad o masa específica de un cuerpo homogéneo al cociente de la masa por su volumen.

$$\delta = \frac{m}{V}$$
 [24]

o sea: la masa de la unidad de volumen.

En el sistema c. g. s. la unidad de densidad será:

$$|\delta| = \frac{g}{cm^3}$$
 [25]

En el sistema técnico:

$$|\delta| = \frac{\text{Kgr seg}^2}{\text{m}^4}$$
 [26]

Se ha definido en § 15 el peso específico $\rho = \frac{P}{V}$; sabiendo que P = mg, obtenemos:

$$\rho = -\frac{mg}{V} = -\frac{m}{V} \cdot g$$

$$\rho = \delta \cdot g \qquad [27]$$

La unidad de peso específico en el sistema c. g. s. es:

$$[\rho] = \frac{\text{dina}}{\text{cm}^3}$$
 [28]

La densidad relativa o cociente de la densidad de un cuerpo por la de otro tomado como término de comparación, es igual al peso específico relativo:

$$D = \frac{\delta}{\delta_0} = \frac{\delta \cdot g}{\delta_0 \cdot g} = \frac{\rho}{\rho_0}$$
 [29]

En química es corriente tomar para los líquidos la densidad o peso específico con respecto al agua, y para los gases con respecto al aire.

Un detalle que cabe destacar para evitar errores conceptuales es que: la densidad en el sistema c. g. s. está representada por el mismo número que el peso específico en gr cm³; unidad que no corresponde a este sistema de unidades ni al sistema técnico.

El peso específico relativo D o densidad relativa es un número abstracto prácticamente igual a los dos anteriores si se toma como término de comparación el agua destilada a 4° C.

Ejemplo:

Hierro

Densidad: sist. c.g.s.
$$\delta = 7.5 \frac{g}{cm^3}$$

,, técnico
$$\delta = \frac{7500}{9,81} = 765 \frac{\text{Kgr s}^2}{\text{m}}$$

Peso específico: sist. c.g.s. .
$$\rho = 7.5 \times 980,665 \frac{\text{dina}}{\text{cm}^3} =$$

,, técnico
$$_{
ho}=7500$$
 $\frac{\mathrm{Kgr}}{\mathrm{m}^3}$

"", práctico". ..
$$\rho = \frac{1}{2}$$
7,5 $\frac{gr}{cm^3}$

P. e. relat. = dens. relat. = D = 7.5.

§ 65.—Tiro en el vacío.—Vamos a estudiar el problema de determinar la trayectoria de un proyectil lanzado en el vacío con la velocidad inicial \mathbf{v}_0 que forma un ángulo a con la horizontal. Nos referimos a dos ejes coordenados x e y en el plano vertical que contiene a \mathbf{v}_0 .

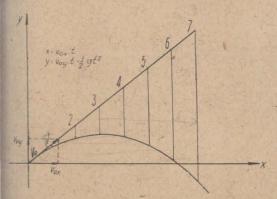


Fig. 161.—Tiro oblicuo en el vacío.

Vamos a aplicar el principio de superposición de movimientos y el de independencia de acción de las fuerzas, es decir: el móvil cumple simultáneamente un movimiento rectilineo uniforme según la recta de acción del vector vo y un movimiento de caída uniformemente acelerado. En los sucesivos segundos las posiciones serán las que representa la figura (161). Es más cómodo descomponer vo en sus componentes según los ejes v_{oy} y v_{ox} , entonces tendremos un movimiento uniforme según x, y uno uniformemente retardado según y, cuyas ecuaciones son:

$$x = v_{ox} \cdot t$$
 [30]

$$y = v_{oy} \cdot t - \frac{1}{2} gt^2$$
 [31]

Para deducir la ecuación de la trayectoria se despeja t en la [30] y se reemplaza en [31].

$$t = \frac{x}{v_{ox}}$$

$$y = v_{oy} \cdot \frac{x}{v_{ox}} - \frac{1}{2} g \frac{x^2}{v_{ox}^2}$$
 [32]

Es fácil comprender que una vez fijado v_o y la inclinación α del tiro, quedan determinados v_{ox} y v_{oy} , de modo que los coeficientes

$$A = \frac{v_{oy}}{v_{ox}}$$

$$B = \frac{g}{2 \text{ vox}^2}$$

de la fórmula [32] son constantes. Queda por tanto la trayectoria representada por una ecuación de la forma:

$$y = A x + B x^2$$
 [33]

que representa una parábola llamada parábola de tiro.

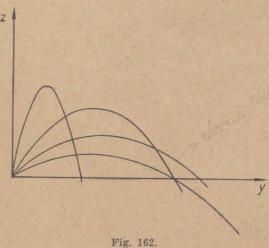
Se llama alcance del tiro a la distancia X_a a la cual el proyectil vuelve a pasar por el plano horizontal de donde partió. En la ecuación [32], si imponemos la condición y=0 y calculamos los valores de x correspondientes resulta:

de:
$$0 = \frac{v_{oy}}{v_{ox}} \cdot X_{o} - \frac{g}{2 v_{ox}^{2}} X_{o}^{2}$$
 [34]

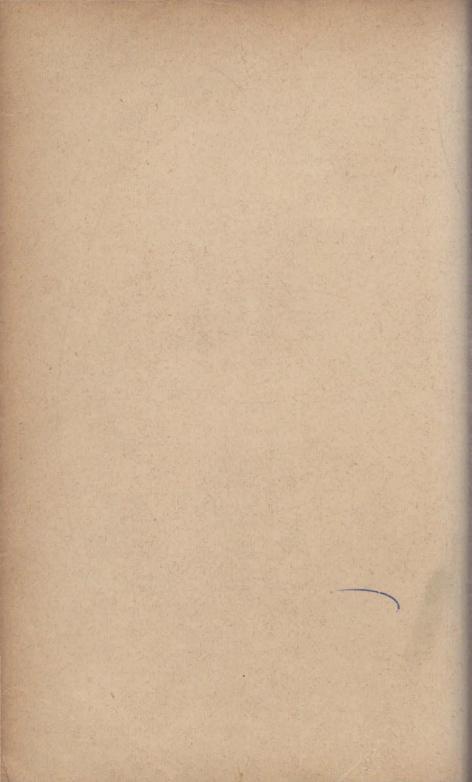
$$\mathbf{X}_o = \mathit{0}, \; \; \mathrm{o} \; \mathrm{bien} \; \; X_o = \mathit{2} \; rac{v_{oy} \; \; v_{ox}}{g}$$

El primer valor corresponde al punto de partida. El segundo da el alcance máximo.

Si recordamos las definiciones de seno y coseno vemos que:


$$v_{ox} = v_o \cos \alpha$$
 $v_{oy} = v_o \sin \alpha$ [35]

y reemplazando en [34] se obtiene:


$$X_{\circ} = \frac{2 \ v_{\circ}^{2} \ \text{sen} \ \alpha \cos \alpha}{g}$$
 [36]

Se demuestra que el producto 2 sen a cos a adquiere su valor máximo igual a la unidad cuando a=45°. En ese caso el alcance es máximo, siendo su valor

$$X_0 = \frac{v_0^2}{g}$$
 [37]

Las parábolas de tiro para distintos valores de α y V_α constante están representadas en la fig. 162.

CAPÍTULO VI

TRABAJO MECÁNICO - ENERGÍA - APLICACIONES

§ 66.—Trabajo mecánico.—Cuando una fuerza actúa sobre un cuerpo que se desplaza, decimos que efectúa trabajo mecánico.

Si sobre el punto A actúa la fuerza de intensidad F y se

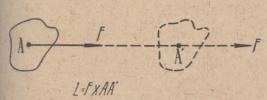


Fig. 163.

produce el desplazamiento AA' en la dirección de la fuerza, el producto F. AA' mide el trabajo efectuado (fig. 163).

tuado (fig. 163).

Si el camino

AA' = e

forma un ángulo a

con la dirección de

la fuerza (fig. 164), se llama trabajo de la fuerza al producto:

$$L = F \cdot e \cdot \cos\alpha$$
 [1]

 $Trabajo = fuerza \times espacio \times coseno del ángulo comprendido.$

En la fórmula [1] el producto $F \cos \alpha$ representa la componente de la intensidad de la fuerza en la dirección del camino AA' (fig. 165).

Por otra parte

 $AA_1 = e \cos \alpha$ representa la proyección del camino sobre la dirección de la fuerza.

Por tanto, puede decirse que el tra-

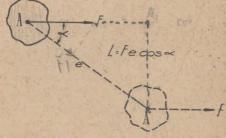


Fig. 164.— $L=F imes e imes \cos a$

bajo es igual al producto del camino e por la componente F, de la fuerza en su dirección o bien al producto de la intensidad de la fuerza F, por la pro-

yección AA, del camino en la dirección de la fuerza.

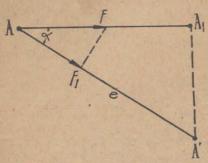


Fig. 165.— $L = F \times A A^{1} = F_{1} \times A A^{2}$

Si el desplazamiento se produce en dirección perpendicular a la de la fuerza, el trabajo es nulo por ser

 $\cos \alpha = \cos 90^{\circ} = 0$

Tal es el caso de un cuerpo que se desplaza sobre un plano horizontal: su peso P no realiza trabajo.

Cuando $\alpha > 90^{\circ}$ resulta cos $\alpha < 0$, es decir, que el trabajo es negativo. En este caso se suele decir que el trabajo es resistente, ya que

la fuerza se opone al desplazamiento. Tal es el trabajo del peso en un cuerpo que sube.

Unidades de trabajo.—En el sistema técnico, la unidad es el kilográmetro (Kgm), producto de 1 Kgr por 1 metro, o sea: el trabajo realizado por una fuerza de 1 Kgr al desplazarse 1 metro en la dirección de su recta de acción.

Este trabajo es el que se realiza levantando a 1 metro de altura un cuerpo que pesa 1 Kgr.

En el sistema c. g. s. la unidad es el erg o ergio, producto de 1 dina por 1 cm.

$$1 erg. = 1 dina \times 1 cm.$$
 [2]

Como

$$dina = \frac{g.cm}{seg^2}$$

Fig. 166.—En un desplazamiento horizontal es nulo el trabajo del peso. Si el cuerpo asciende ese trabajo es negativo y si desciende es positivo.

resulta

$$erg = g \frac{cm^2}{seg^2}$$

En unidades prácticas se utiliza el *joule* o *julio*, igual a - 10 millones de erg, o sea:

$$1 joule = 107 erg$$

En base a estas definiciones podemos establecer las siguientes relaciones:

1 Kgm = 1 Kgr
$$\times$$
 1 m = 980665 dina \times 100 cm
1 Kgm = 98.066.500 erg
1 Kgm = 9,80665 $joule$

§ 67.—Definición general de trabajo. En los casos en que la fuerza no es constante ni el camino es rectilíneo, para calcular el trabajo total se considera al camino dividido en pequeños elementos rectilíneos de lon-

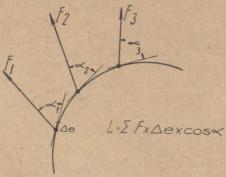


Fig. 167.—Definición general de trabajo.

gitud Δ e, durante los cuales se supone la fuerza constante y se suman los trabajos calculados para cada intervalo.

$$L = F_1 \Delta e_1 \cos \alpha_1 + F_2 \Delta e_2 \cos \alpha_2 + \ldots + F_n \Delta e_n \cos \alpha_n [4]$$

que se escribe:

$$L = \Sigma F$$
 . $\Delta e \cos \alpha$

El trabajo es una magnitud escalar.

§ 68.—Aplicación del concepto de trabajo al estudio de las máquinas simples.

1.—Plano inclinado.

Sea un plano AB ce inclinación a sobre el cual se encuen-

tra apoyado un cuerpo de peso P, mantenido en su posición de equilibrio por la fuerza F, paralela al plano.

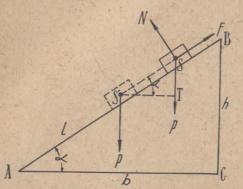


Fig. 168.—Equilibrio en el plano inclinado.

Las fuerzas que actúan sobre el cuerpo son: su peso P, la fuerza F y la reacción del plano N; si hay equilibrio, la resultante debe ser nula. Imaginemos un desplazamiento SS' del cuerpo sobre el plano; la suma de los trabajos de las fuerzas que actúan debe ser nula, pues lo es el de la resultante. Como la reacción N es perpendicular al desplazamiento, su trabajo es igual a cero,

y, por lo tanto, debe ser también nula la suma de los trabajos de las fuerzas P y F. Dichos trabajos son:

$$L_p = P \times ST ; L = -F \times SS'$$
 [5]

pero de la semejanza de SS'T y ABC:

$$\overline{ST} = \frac{h}{l} \overline{SS'}$$
 [6]

luego:

$$L_p = P \cdot \frac{h}{l} \cdot SS'$$

sumando Lp y L e igualando a cero:

$$L_{\scriptscriptstyle P} + L = P \, \frac{h}{l} \, \, SS' - F \, \, . \, \, SS' = 0 \, \,$$

de donde:

$$P \frac{h}{1} = F$$
 o lo que es lo mismo:

fórmula que concuerda con la [21] del § 30.

b) Palanca.—Sea AB la palanca apoyada en O y P y Q las fuerzas aplicadas en los extremos.

Podemos imaginar una rotación tan pequeña como para considerar que los extremos A y B experimentan desplazamientos verticales AA' y BB'.

Los trabajos serán:

$$L_p = P \times \overline{AA'}$$

$$L_a = -Q \times \overline{BB'}$$

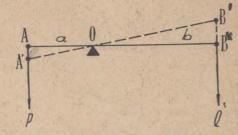


Fig. 169.—Equilibrio en la palanca.

sumando:

$$L_p + L_a = P \times AA' - Q$$
. $BB' = 0$

luego:

$$\frac{P}{Q} = \frac{BB'}{AA'}$$

Pero de los triángulos semejantes OAA' y OBB', deducimos:

$$\frac{BB'}{AA'} = \frac{OB}{OA}$$

luego:

$$\frac{P}{Q} = \frac{OB}{OA} = \frac{b}{a}$$

Condición que concuerda con la del § 26.

c) Tornillo.—Consideremos un tornillo de paso p, que gira por la acción de la fuerza P normal al brazo a (caso de las prensas de copiar).

En una vuelta completa, la potencia P realizará un trabajo:

$$L_p = 2 \pi a \cdot P$$

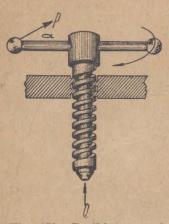


Fig. 170,-Equilibrio en el tornillo.

y la resistencia Q experimenta un desplazamiento igual al paso p del tornillo; luego, el trabajo se-

$$L = -Q \cdot p$$

por lo tanto:

$$L_p + L = 2 \pi a P - Q \cdot p = 0$$

de donde:

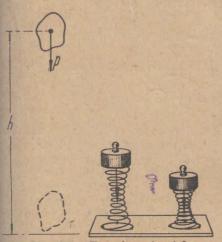
$$P = \frac{p}{2 \pi a} \cdot Q \qquad [9]$$

Este método para el estudio del equilibrio es una aplicación del principio de los trabajos virtuales, de gran utilidad en la estática y que se enuncia así:

En todo sistema mecánico en equilibrio es nula la suma de los trabajos de las fuerzas aplicadas, para todo desplazamiento virtual compatible con los vínculos.

Entendiendo por vínculos, las condiciones que se imponen a los desplazamientos (en el plano indicado el cuerpo está sujeto a moverse apoyado sobre el plano, en un cuerpo colgado por un hilo de longitud l debe moverse sobre la superficie esférica del radio l).

Y por desplazamiento virtual, todo desplazamiento imaginado en


forma tal que no modifique las condiciones del sistema. En algunos casos deberá imaginárselo infinitamente pequeño (pa lanca) y en otros puede ser finito (plano inclinado).

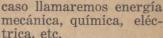
ENERGÍA

§ 69.—Definiciones.—Decimos que un cuerpo o sistema de cuerpos posee energía cuando tiene capacidad de producir trabajo.

Por ejemplo: un cuerpo colocado a cierta altura puede realizar trabajo si se deja caer; un resorte comprimido realizará un trabajo al extenderse; una carga de pólvora al quemarse, realizará trabajo por la expansión de los gases que se

generan; una pila eléctrica podrá hacer funcionar un pequeño motor. Decimos que esos cuerpos poseen energía, que en cada

171.—Energia potencial.


cierta velocidad, puede realizar trabajo a expensas de la misma, pues para detenerlo será necesario aplicarle una fuerza, que se desplazará realizando trabajo.

Decimos que posee energía cinética,

es decir, energía de movimiento.

Tal es el caso del martillo, que cayen-

do sobre la hoja de metal la deforma transformando su energía cinética en trabajo de deforma-

La energía mecánica puede ser de dos clases: en el ejemplo del cuerpo colocado a cierta altura. su capacidad para producir trabajo se debe exclusivamente a la posición que ocupa, en el ejemplo del resorte comprimido se debe a la deformación. En estos casos decimos que se trata de energía potencial, es decir, energía de posición o de for-

En cambio, un cuerpo de masa m, animado de

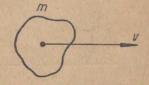
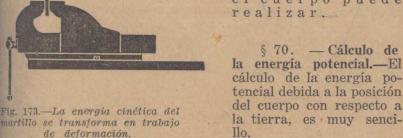



Fig. 172.—Una masa en movimiento posee energia cinética.

Mediremos la energía por el trabajo que el cuerpo puede

Si consideramos un cuerpo de peso ? colocado a una altura h sobre el suelo cayendo verticalmente hasta el nivel del suelo, su peso realizará un trabajo:

$$L = Ph$$

que mide la energía potencial inicial del cuerpo:

$$E_{p} = Ph = Mgh$$
 [10]

Se comprende que este valor depende del nivel del plano al cual asignamos energía potencial cero (nivel del suelo). En

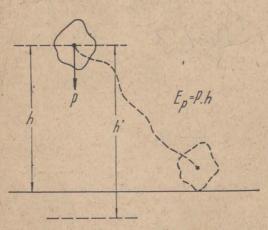


Fig. 174.—La variación de energía potencial es igual al peso por la variación de nivel, cualquiera sea el camino.

general, sólo es necesario referirse a las variaciones de energía potencial debidas a las variaciones de altura. Si el cuerpo se mueve sobre un plano horizontal su energía potencial permanecerá constante, y si se desplaza en una dirección cualquiera, sólo inte resa, para el cálculo de la variación de energía potencial, la diferencia de nive entre las posiciones inicial y final, pues por la definición de trabajo, éste se ob-

tiene multiplicando la intensidad de la fuerza (en este caso e peso) por la proyección del camino recorrido en la dirección de la fuerza (diferencia de nivel h).

Como la energía potencial a u m e n ta al subisel cuerpo, y en ese caso el trabajo del peso es negativo diremos: el trabajo del peso, cambiado de signo, mide el aumento de energía potencial.

 \S 71.—Cálculo de la energía cinética.—Consideremos u cuerpo de masa m, animado de velocidad v. Para medir se energía cinética apliquemos una fuerza f en sentido contrari

a v, la cual proporcionará una aceleración negativa a = $\frac{f}{m}$

de modo que el movimiento se hace uniformemente retardado. El trabajo realizado por la fuerza f hasta que el cuerpo se haya detenido nos medirá la energía cinética inicial, cambiada de signo.

Dicho trabajo será:

$$L = -f \cdot e$$

Pero

Fig. 175.—La energia cinética se mide por el trabajo de la fuerza que detiene al cuerpo.

$$e = vt - 1/2$$
 at $2 = \frac{v^2}{2a}$ [ver probl. c, § 52], pues

 $t = \frac{v}{a}$ por ser nula la velocidad final.

y como f = ma , resulta:

$$L = - ma \frac{v^2}{2a} = - \frac{mv^2}{2}$$

La energía cinética será entonces:

$$E_c = \frac{mv^2}{2}$$
 [11]

§ 72.—Teorema de las fuerzas vivas.—Supongamos un cuerpo de masa m en reposo a la altura h. Si lo dejamos caer libremente seguirá una trayectoria vertical AB con movimiento uniformemente acelerado, llegando al suelo con velocidad v, y energía cinética $\frac{1}{2}$ mv² (fig. 176).

En el recorrido AB = h el peso del cuerpo habrá realizado

un trabajo:

$$L = P \cdot h = mgh$$
 [12]

Es fácil verificar que este trabajo es equivalente a la ener-

gía cinética adquirida, ya que se tiene por las leyes del movi miento de caída libre:

$$h = \frac{1}{2} gt^2$$

$$v = gt$$

y reemplazando en la [12]

$$L = mgh = mg \cdot \frac{1}{2} gt^2 = \frac{1}{2} mg^2t^2$$

o sea:

$$L = \frac{1}{2} \text{ m } [gt]^2 = \frac{1}{2} \text{ mv}^2$$

Puede ocurrir que la fuer za aplicada a un cuerp que parte del reposo no se su peso, sino cualquier otra y también se verificará que el cuerpo adquiere una ener gía cinética igual al trabaj de la fuerza:

$$L = F \cdot e = \frac{1}{2} \text{ mv}^2$$
 [14]

Si la velocidad inicial n es nula, el trabajo de la fuel za aplicada al cuerpo ser igual a la variación de l energía cinética.

Llamando v₁ y v₂ las velocidades inicial y final, y e₁ y e

A P = mg

h

K V

B

Fig. 176.—Transformación de ener-, gía potencial en cinética.

los espacios recorridos en los instantes correspondientes, (fig 177), es fácil probar para una fuerza F que

L = F [e₂ - e₁] =
$$\frac{1}{2}$$
 mv₂² - $\frac{1}{2}$ mv₁²

$$\frac{v_1}{e_1} \frac{v_2}{e_2}$$
Fig. 177.

o sea que:

T18

Refiriéndonos al caso del cuerpo que cae verticalmente fig. 176), vemos que al llegar a un punto tal como K tiene ma energía cinética ½ mv².

El trabajo del peso en el trayecto h', que le falta para lle-

ar al suelo cumple la condición:

$$P \cdot h' = \frac{1}{2} mv^2 - \frac{1}{2} mv'^2$$
 [1]

La fórmula [15] expresa el teorema de las fuerzas vivas, ues al producto $\frac{1}{2}$ m v^2 se lo llama fuerza iva.

Este teorema se puede enunciar, generalizándolo para un istema de fuerzas actuando sobre un cuerpo, del siguiente nodo: La suma de los trabajos de todas as fuerzas exteriores que obran sobre in cuerpo es igual a la variación total le fuerza viva que ellas le imprimen.

§ 73.—Aplicación.—Imaginemos un móvil de peso P que ube por un plano inclinado bajo la acción de una fuerza consante F (si es un automóvil, suponemos que la acción del motor quivale a la de una fuerza de tracción F) (fig. 178).

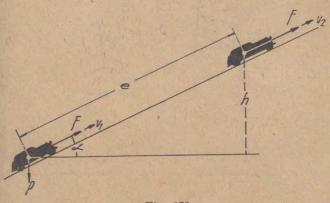


Fig. 178.

Las fuerzas que actúan son P y F. Apliquemos el teorema de las fuerzas vivas:

⁽¹⁾ Teniendo en cuenta que ½ mv²² es igual al trabajo P (h — h') para recorrer AK, es fácil comprobar que la suma ½ mv²² + Ph' = Ph, o sea que en cualquier posición la suma de las energías potencial y cinética del cuerpo que cae es un valor constante igual a la energía potencial inicial Ph.

Trabajo de la fuerza F: L = F. e

,, del peso:
$$L_p = -P \cdot h$$

Variación de fuerza viva: $E_2 - E_1 = \frac{1}{2} \text{ mv}_2^2 - \frac{1}{2} \text{ mv}_1^2$ Por lo tanto:

F.e-P.h =
$$\frac{1}{2}$$
 m [$v_2^2 - v_1^2$] [1

Si conocemos el peso P, las velocidades v_1 y v_2 y el camine e y la altura h, podremos calcular la fuerza F de tracción:

$$F = \frac{\frac{1}{2} m \left[v_2^2 - v_1^2 \right] + Ph}{e}$$

Si:

$$P = 2.000 \; \text{Kgr} \quad M = \frac{2.000 \; \text{Kgr seg}^2}{9.81 \; \text{m}}$$

$$v_2 = 60 \; \text{Km} | h = 16.66 \; \text{m} | \text{seg}$$

$$v_1 = 30 \; \text{Km} | h = 8.33 \; \text{m} | \text{seg}$$

$$e = 100 \; \text{m}$$

$$h = 5 \; \text{m}$$

resulta según [17]

$$F = rac{\frac{1}{2}}{9.8} \frac{2000}{9.8} [16.66^2 - 8.33^2] + 2.000 \times 5}{100} \text{ Kgr}$$
 $F = 312 \text{ Kgr}$

Esta fuerza es la suma de otras dos: la fuerza necesaria pequilibrar el cuerpo $[F_1 = P - \frac{h}{l}] = 100 \text{ Kgr}$, y, además, la que necesita para producir una aceleración tal que en los 100 m de re rrido la velocidad aumente de 30 a 60 Km hora.

§ 74.—Unidades.—Como la energía se mide por el trabajo que puede producir el sistema, la unidad de energía será la misma que la de trabajo:

§ 75.—Potencia.—Se llama potencia al trabajo realizado en la unidad de tiempo. Si se realiza un trabajo L en el tiempo t, la potencia será:

$$W = \frac{L}{t}$$

De acuerdo con las unidades de trabajo y tiempo, las unidades de potencia serán:

Sistema técnico....
$$\frac{\text{Kgm}}{\text{seg}}$$

,, c. g. s..... $\frac{\text{erg}}{\text{seg}}$

,, práctico.... $\frac{\text{Joule}}{\text{seg}}$ = watt o vatio

En la técnica se usa con frecuencia otra unidad, en la cual se expresan las potencias de las máquinas: es el caballo vapor (C. V.), equivalente a 75 $\frac{\text{Kgm}}{\text{seg}}$ Prácticamente equivale al HP (Horse Power), unidad inglesa igual a 550 $\frac{\text{pie libra}}{\text{segundo}}$ \approx 76 $\frac{\text{Kgm}}{\text{seg}}$

Sin embargo, se utiliza corrientemente el caballo vapor con la designación HP asignándole 75 $\frac{\mathrm{Kgm}}{\mathrm{seg}}$

Las equivalencias entre unas y otras unidades pueden d ducirse fácilmente:

$$CV = 75 \frac{Kgm}{seg} = 75 \times 98066500 \frac{erg}{seg} = 75 \times 9,80665 \frac{Joule}{seg} = 736 \text{ watt}$$

Se utiliza también el Kilowatt = 1000 watt.

Ahora resulta el trabajo como producto de potencia potencia potencia: L = W . t, y se utilizan las unidades:

CVH = caballo vapor hora = 75
$$\frac{\text{Kgm}}{\text{seg}} \times 3600 \text{ seg}$$

Wh = watt-hora = 1 W \times 3600 seg = 3600 joule

Kwh = 1000 watt-hora = 3600000 joule

TABLA VI EQUIVALENCIA DE UNIDADES TRABAJO

Erg	Joule	Kgm	
1	10-7	$1,02 \times 10^{-8}$	
107	1	0,102	
9.81×10^7	9,81	1 -1	
3.6×10^{10}	3600	367,2	
3.6×10^{13}	3.6×10^{6}	$3,672 \times 10^{\circ}$	
$2,65 \times 10^{13}$	$2,65 imes 10^6$	$2,7 \times 10^{5}$	
	$egin{array}{c} 1 \\ 10^7 \\ 9,81 imes 10^7 \\ 3,6 imes 10^{10} \\ 3,6 imes 10^{13} \\ \end{array}$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	

TABLA VII POTENCIA

	Erg/seg	W	KW	Kgm/seg	CV
Erg/seg .	1	10-7	10-10	$1,02 \times 10^{-8}$	1,36 × 10-
Watt	107	1	10-3	0,102	$1,36 \times 10^{3}$
KW	1010	1000	1	102	1,36
Kgm/seg .	9.81×10^{7}	9,81	0,00981	1	0,0133
CV	736×10^{7} 981×10^{7}	736 981	0,736 0,981	75 100	1,33

§ 76.—Principio de conservación de la energía mecánica—Implícitamente hemos estado aplicando, en los ejemplos estados hasta aquí, el principio de conservación de la energimecánica que es un caso particular del principio más genera de conservación de la energía.

Hemos visto cómo, en el cuerpo que cae 'libremente, la mergía potencial se transforma en energía cinética; en el cuerto que, sometido a la acción de una fuerza F asciende por un lano inclinado (§ 73), hemos admitido que la suma algebraica lel trabajo del peso y el de la fuerza aplicada es igual a la vatación de energía cinética. Pero el trabajo del peso, cambiado le signo, mide el aumento de energía potencial, de modo que odemos decir (ver fórmula [10], § 70): el trabajo de la fuera F es igual a la suma de los aumentos de las energías cinétia y potencial del cuerpo.

Si llamamos energía mecánica a la suma de la cinética y a potencial, enunciamos así el principio de conservación de la

mergía mecánica:

En toda transformación puramente necánica, el trabajo de las fuerzas xteriores es igual al aumento de la nergía mecánica.

Aclararemos que llamamos fuerzas exteriores a las que

jercen otros cuerpos sobre el que consideramos.

Volvamos al ejemplo del cuerpo que cae libremente desde a altura h. Allí posee energía potencial; cae, disminuyendo su nergía potencial mientras aumenta la energía cinética. Al llegar al suelo, en el trabajo de las deformaciones que se produen en el cuerpo y en el suelo, se emplea la energía cinética acrdida, y veremos más adelante que ese trabajo se transforma a su vez en otra forma de energía (calor).

§ 77.—Frotamiento.—Hasta ahora hemos estudiado el movimiento de los cuerpos y el deslizamiento de uno sobre otro, maginando que no existían fuerzas de frotamiento.

En realidad, cuando un cuerpo está apoyado sobre otro, para ponerlo en movimiento o para mantener su velocidad cons-

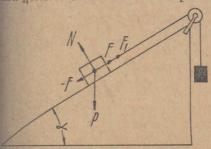


Fig. 179.—Resistencia al desplazamiento en un plàno inclinado con frotamiento.

tante es necesario aplicar una fuerza, c u y a única función es equilibrar las resistencias debidas al frotamiento que se produce en la superficie de contacto.

Si el cuerpo de peso P está apoyado sobre un plano inclinado, la fuerza

F=P. sen α

equilibrará a la componente del peso en la dirección del plano; pero si queremos que el cuerpo se des-

place, ascendiendo por el plano con velocidad constante, ser necesario aplicar una fuerza $F_1 = F + R$, en que R es la fuerz de frotamiento (fig. 179).

Distinguiremos dos clases de frotamiento: por desliza

miento y por rodadura.

§ 78.—Frotamiento por deslizamiento.—Se produce cuand

el cuerpo que se mueve se desliza sobre el otro.

Supongamos el caso de la fig. 179. Para que el cuerr inicie su movimiento será necesario aumentar la fuerza F un valor:

 $R_0 = k_0 N$

Fig. 180.—Tribómetro para medida de coeficientes de fr

es decir, proporcional a la fuerza que el cuerpo ejerce sobi el plano y a un coeficiente ko, que llamaremos coeficiente

frotamiento en reposo.

Una vez iniciado el movimiento, para mantener constan la velocidad, la fuerza necesaria (siempre nos referimos al e ceso sobre la fuerza F que equilibra la componente del peso será, en general, diferente:

> R = k N[20]

pero también proporcional a la fuerza normal N v a un coeficiente numérico k que no depende del área de la superficie de contacto y sólo depende de la naturaleza y estado de las mismas, llamado coeficiente de frotamiento por des-

Coulomb estudió y determinó

tamiento. las leves del frotamiento (1781) con el dispositivo de la figura 180, llamado tribómetro, en

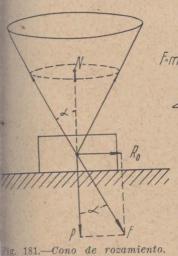
cual el peso p mide la fuerza R de frotamiento. Y enunció le siguientes leves:

1º) La fuerza R es proporcional al peso P (en general

la fuerza normal al plano de deslizamiento).

2º) Es independiente del área de la superficie de con tacto.

3°) Es sensiblemente independiente de la velocidad.


En los mecanismos se disminuye el frotamiento interp niendo lubricantes entre las superficies.

§ 78 a.—De acuerdo con lo dicho, para que un cuerpo ap yado sobre un plano horizontal comience a deslizarse, será n cesario aplicar una fuerza:

Para valores menores, el cuerpo quedará en reposo. La sultante de estas fuerzas, R_o y P, no es perpendicular al ano, y la reacción del mismo (igual y contraria), tampoco lo rá. El ángulo α da la inclinación de la resultante para la la comienza el movimiento Su valor cumple la condición

$$tg~\alpha = \frac{R_0}{P} = k_0.$$

Imaginando fuerzas aplicadas en todas las direcciones rededor de *P* queda determinada una superficie cónica de

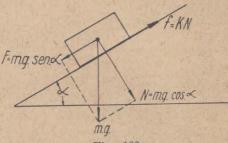


Fig. 182.

ángulo α que delimita el cono de rozamiento (fig. 181).

En todos los casos en que la reacción del plano sea interior a dicha superficie, el cuerpo permanecerá en reposo.

§ 79.—Aplicación.—Calcular

a aceleración de caída por un plano inclinado de inclinación para un cuerpo que se desliza, siendo k el coeficiente de fromiento. (fig. 182).

La fuerza que mueve el cuerpo sobre el plano será la dierencia entre la componente del peso F = mg sen α , y la fuera de frotamiento (proporcional a la componente del peso en lirección normal al plano): f = kN = k. $mg \cos \alpha$.

La aceleración debe cumplir el principio de masa:

$$m.a = F - f = mg \operatorname{sen} a - kmg \cos a$$

de donde, dividiendo por m:

$$a = g [sen a - k cos a]$$
 [21]

Si sen $\alpha = k \cos \alpha$ el movimiento es uniforme, y en ese

caso resulta
$$k = \frac{\sin \alpha}{\cos \alpha} = tg \alpha$$
. Si sen $\alpha < k \cos \alpha$, es

F < f, y el cuerpo queda en reposo sobre el plano.

§ 80.—Las leyes de Coulomb no son rigurosamente exa tas. Ante todo, debe tenerse en cuenta que la fuerza necesar para iniciar el movimiento es mayor que para mantenerlo un forme (k. > k). Además, en 1855 Hirn y Petroff encontraro las siguientes leyes para piezas lubricadas:

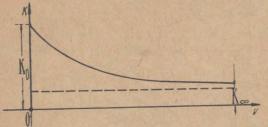


Fig. 183.—Variación del coeficiente de frota tamiento es propo miento con la velocidad.

—La fuerza de n zamiento entre pi zas de máquinas bie engrasadas es, igualdad de condici nes, proporcional las superficies.

—La fuerza de fr cional a la velocidad

- Es inversamente proporcional al espesor medio de capa lubricante.

- Es proporcional a la raíz cuadrada de la presión total A pesar de esto, para pequeñas velocidades pueden adm tirse con suficiente aproximación las leyes de Coulomb.

TABLA VIII COEFICIENTES DE ROZAMIENTO

SUBSTANCIAS EN CONTACTO	ko		k			
	Secas	Engrasa- sadas	Con	Secas	Engrasa- sadas	Con agu
Acero/acero Metal/madera . Madera/madera . Cuero/metal . Madera/piedra . Mampostería/	0,65	0,12 - 0,11 0,1 0,2 0,25 - 0,12 0,4	0,7 0,62	0,4 - 0,2	0,009 0,08 - 0,02 0,16 - 0,04 0,15 - 0,12	0,25

§ 81.—Frotamiento por rodadura.

Cuando rueda un cilindro sobre un plano, se manifies una resistencia al movimiento llamada de frota mient por rodadura.

Esta resistencia es mucho menor que en el caso del des

zamiento y sus leyes fueron también estudiadas por Coulomb. Se la considera debida a la deformación de las superficies en la zona de contacto, de modo que apoya sobre el plano no ya una generatriz del cilindro, sino una pequeña zona rectangular (figs. 184 y 185).

De acuerdo con los estudios de Coulomb, para producir la rodadura hay que aplicar una fuerza f tal que su momento con

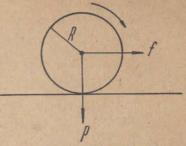


Fig. 184.—Frotamiento por rodadura.

respecto al punto 0 sea proporcional a la fuerza P que el cilindro ejerce sobre el plano:

$$M = f \cdot 2R = \varphi P$$
 [22]

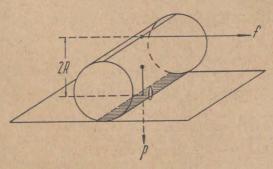


Fig. 185.—El frotamiento por rodadura es debido a la deformación de las superficies de contacto.

El coeficiente ϕ se llama coeficiente de frotamiento por rodadura, siendo su valor:

$$\phi = \frac{M}{P} = \frac{2Rf}{P}$$
 [23]

Este coeficiente debe tener las dimensiones de una longitud

para que la fórmula sea homogénea.

Se comprende que el momento M puede obtenerse con una fuerza colocada a cualquier distancia de 0, con tal que cumpla la condición de ser $M=\phi$ P, su momento con respecto a dicho punto.

El hecho de que el coeficiente de frotamiento por rodadura sea menor que el de deslizamiento hace que en los casos en

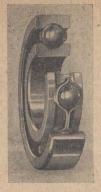


Fig. 186.—Cojinetes a bolillas y rodillos.

que se quieran reducir al mínimo las fuerzas de frotamiento, « utilicen cojinetes con rodillos o bolillas.

Coeficiente de frotamiento por rodadura:

Poncelet indicó para ruedas de hierro colado, sobre riela salientes y con engrasamiento continuo:

0,0010 a 0,0012 cm para acero sobre acero: 0,005 cm

§ 82.—Aplicaciones numéricas.

 1°) Se arroja un trozo de madera pulida de modo que se desin sobre una superficie horizontal también de madera pulida y recome e = 68 m hasta detenerse. ¿Cuál es la velocidad inicial si el coeficient de rozamiento es k = 0.3?

Respuesta:

$$v_o = \sqrt{2e \ k.g} = 19.9 \ m | seg$$

2°) Un automóvil marcha a 60 Km/hora y se suprime la acción motor. Admitiendo que el coeficiente de rozamiento es $k=\frac{1}{20}$ ¿Cuám vale su aceleración negativa? ¿Qué camino recorre en el primer segui y cuál es la velocidad al cabo de 10 seg?

Respuesta:

a)
$$a = k.g = 49 \frac{cm}{seg^2}$$

b)
$$e_1 = 16.41 \text{ m}$$

c)
$$v_{10} = 11,76 \text{ m/seg}$$

CAPÍTULO VII

PÉNDULO - MOVIMIENTO CIRCULAR UNIFORME -MOVIMIENTO OSCILATORIO ARMÓNICO -MOVIMIENTO DE LOS PLANETAS

§ 83.—Péndulo ideal - Juego de la energía - Leyes.

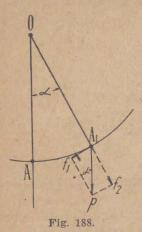
Se llama *péndulo* todo cuerpo que puede oscilar alrededor de un eje fijo.

Comenzaremos estudiando el *péndulo ideal* o péndulo simple que está constituído por un *punto material* (m) suspendido de un punto fijo O, con un hilo inextensible y sin peso.

Entendemos por *punto material* un elemento de masa de dimensiones *nulas*, es decir, un elemento geométrico sin dimensiones (punto), pero, con masa distinta de cero, y, por lo tanto, pesa do.

Este sistema así formado tendrá una posición de equilibrio estable (fig. 187) en la cual el hilo está vertical, y el pun-

to material sobre la vertical que pasa por el centro de


suspensión.

(m) p-mg

Fig. 187.—Péndulo físico y péndulo simple.

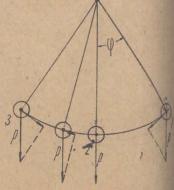
Separado de su posición de equilibrio, el peso sigue siendo una fuerza vertical, y podemos descomponerlo en dos fuerzas: una, en la dirección del hilo $(f_2 = p \cos \alpha)$, y otra, en dirección normal al hilo $(f_1=p \sin \alpha)$ que está dirigida siempre hacia la posición de equilibrio (fig. 188). Por el principio de masa, deducimos que el punto material se moverá siempre con aceleración dirigida hacia la posi-

ción de equilibrio estable, pues la fuerza f₂ está equilibrada por la reacción del hilo, al cual hemos impuesto la condición de ser inextensible para que su longitud permanezca constante. Abandonando, pues, el péndulo a sí mismo en la posición OA₁, la masa (m) se mueve con movimiento acelerado. Cuando

pasa por la posición vertical, ha adquirido cierta velocidad, pero en ese preciso instante la fuerza f₁ y, por lo tanto la aceleración, son nulas. Entonces continúa moviéndose hacia la izquierda, y la aceleración se hace negativa creciente, disminuyendo la velocidad hasta anularse e invertirse el movimiento, dirigiéndose ahora nuevamente hacia la posición de equilibrio. Continúa así el péndulo oscilando alrededor de la posición OA.

Es interesante analizar el funcionamiento del péndulo, desde el punto de vista de la conservación de la energía. Por lo pronto, se trata de un sistema que no realiza trabajo exterior, de modo que su energía total (potencial + cinética)

debe permanecer constante; suponiendo que se encuentra en el vacío, es decir, sin resistencia del aire y sin rozamiento en 0.


En la posición 1 (fig. 189), de máxima elongación (ángulo que forma con la posición de equilibrio) hacia la derecha, la masa ocupa la posición de altura máxima, y en ese instante en que se invierte el movimiento, su velocidad (y su energía cinética) es nula.

Luego, al moverse hacia la posición 2, va disminuyendo la energía potencial y aumentando la cinética, que llegan a sus valores mínimo y máximo, respectivamente. Pasando de 2 hacia 3, se produce el proceso inverso, siendo en 3 máxima la energía potencial y nula la cinética.

siendo en 3 máxima la energía potencial y nula la cinética.

Se llama oscilación simple al recorrido 1 - 3, o viceversa

(fig. 190). Oscilación doble o completa es el recorrido 1 - 2 - 3 - 2 - 1, o, en general, es el camino que recorre a partir de una posición cualquiera hasta volver a pasar por la misma posición en el mismo sentido (fig. 191).

Tiempo de oscilación, simple o doble, es el tiempo que tarda el péndulo en cumplir *una* oscilación simple o doble.

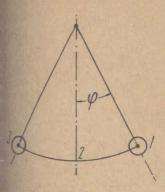


Fig. 190.

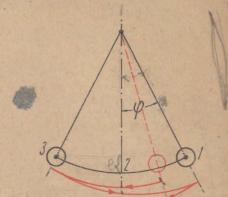


Fig. 191.—Definición de oscilación doble.

Amplitud de oscilación es el ángulo que forma la posición de máxima elongación con la de equilibrio (φ).

Se comprende que un péndulo ideal, tal como lo hemos definido, no es realizable experimentalmente.

Los péndulos que podemos construir son péndulos físicos, es decir, constituídos por cuerpos materiales, en los cuales la resistencia del aire y el roce en el eje de suspensión, provocan una disminución progresiva de velocidad, hasta detenerlos. En este caso decimos que hay amortiguamiento.

Puede, sin embargo, construirse un péndulo físico en condiciones muy próximas a la del péndulo ideal; tomando una pequeña esfera metálica (de aproximadamente 1 cm de radio), y colgándola con un hilo resistente, pero muy liviano en comparación con el peso de la esfera, de una longitud de más de 1 metro (preferible 2 a 3 metros).

Se podrán comprobar experimentalmente las si-

guientes leyes:

1º) El tiempo de oscilación es independiente de la sustancia de que está hecho el péndulo.

puesto. 2º) Para oscilaciones de pequeña amplitud, el tiempo de oscilación es independiente dela amplitud (ley de isocronismo).

Fig. 192.
Esquema
de péndulo com-

3º) En péndulos de distinta longitud, los tiempos de oscilación son proporcionales a las raíces cuadradas de las longitudes

$$\frac{\mathrm{T}_1}{\mathrm{T}_2} = \frac{\sqrt{l_1}}{\sqrt{l_2}}$$

4º) En distintos lugares de la Tierra, los tiempos de oscilación de un mismo péndulo son inversamente proporcionales a las raíces cuadradas de las aceleraciones de la gravedad.

$$\frac{\mathrm{T}_2}{\mathrm{T}_1} = \frac{\sqrt{g_1}}{\sqrt{g_2}}$$

Estas leyes se recuerdan fácilmente con la fórmula para el cálculo del tiempo de oscilación:

$$t=\pi \sqrt{rac{l}{g}}$$
 oscilación simple [3]

o bien, para el período:

$$T=2~\pi~\sqrt{rac{l}{g}}$$
 oscilación doble [4]

§ 84.—Comprobación de las leyes del péndulo.

1º ley) Se toman dos péndulos de igual longitud, y se colocan en sus extremos esferas de distinto material e igual radio. Separándolos de su posición de equilibrio y soltándolos al mismo tiempo, se observa que durante muchas oscilaciones mantienen el sincronismo, es decir, pasan simultáneamente por su posición de equilibrio. Será conveniente culdar que las longitudes sean exactamente iguales

Puede ocurrir que las oscilaciones del más liviano disminuyan más rápidamente de amplitud, pero el sincronismo se mantiene.

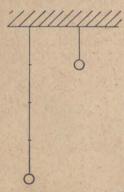
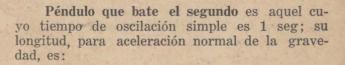


Fig. 193 .- A longitud cuádruple corresponde período doble.

2ª ley) La misma experiencia anterior dan do diferentes elongaciones iniciales.

3ª ley) Con dos péndulos de longitudes en la relación 1 a 4. Cuando el péndulo más corto cumple una oscilación doble el más largo sólo cumple una oscilación simple.

48 leys) Con Fig. 194.—Péndulo de Mach.


péndulo de Mach, figura 194, cuyo plano de oscilación se inclina fornando un ángulo a con la vertical y ello equivale a multiplicar g por el coeno α Los tiempos serán entonces, para dos posiciones α_1 y α_2 inveramente proporcionales a las raíces cuadradas de los cosenos de los ánrulos:

$$\frac{T_1}{T_2} = \sqrt{\frac{\cos \alpha_2}{\cos \alpha_1}}$$
 [5]

§ 85.—Péndulo físico.—Los péndulos realizados con un uerpo cualquiera que oscila, por templo, los péndulos de los relojes, se llaman pendulos físicos o pendulos

compuestos.

Todo péndulo físico tiene un tiempo de oscilación bien determinado. De las fórmulas [3] ó [4], se puede deducir la longitud del péndulo simple cuyo tiempo de oscilación es igual al del péndulo compuesto. Esta longitud se llama longitud reducida del péndulo compuesto, o simplemente longitud del péndulo simple sincrónico.

$$t = \frac{\mathrm{t}^2 g}{\pi^2} = \frac{12.9,80665}{3,14162} = 0,9936 \text{ m}$$

Si es un segundo el tiempo de oscilación do ble, la longitud debe ser:

$$l_1 = \frac{l}{4} = 0,2484 \text{ m} = 24,84 \text{ cm}$$

§ 86.—Determinación de la aceleración de la gravedad.

El péndulo proporciona uno de los métodos más exactos

ara determinar la aceleración de la gravedad.

Si tomamos un péndulo como hemos descrito ya, formado or una pequeña esfera colgada por un hilo muy largo y liviao, en comparación con las dimensiones de la esfera, nos aproimamos a las condiciones del péndulo ideal (punto material olgado con hilo sin peso), y de la medida del tiempo de oscilaión y la longitud hasta el centro de la esfera deducimos (fórm. 4]:

$$g = \frac{4 \pi^2 l}{T^2} \tag{6}$$

ig. 195.-Molelo de pén-lulo físico o compuesto.

Para obtener buenos resultados será necesario medir muy bien l y, sobre todo, T, el tiempo de oscilación, pues el error relativo de su medida se duplica al elevarlo al cuadrado para aplicar la fórmula.

Por otras consideraciones se deduce que el péndulo así constituído, si es r el radio de la esfera, tiene un tiempo de oscilación igual al del péndulo ideal de longitud:

$$\ell_1 = l + \frac{2}{5} \frac{r^2}{l} \qquad ; \qquad \qquad$$

con esta fórmula se comprende que es suficientement aproximado operar con la longitud l en los casos en que $\frac{1}{l}$ es muy pequeño.

Así por ejemplo: si l=2 m, y r = 2 cm se tiene:

$$l_1 = 2 \text{ m} + \frac{2}{5} \frac{(0.02)^2}{2} \text{ m} = 2 \text{ m} + 0.00008 \text{ m}$$

resulta una corrección de 8 centésimos de milímetro, que, en general, emenor que la aproximación con que se ha medido l.

En cuanto a la validez de la fórmula de isocronismo, si se quientener en cuenta la amplitud de las oscilaciones en el cálculo del tiempo de oscilación debe aplicarse la fórmula:

$$T = 2 \pi \sqrt{\frac{l}{g}} \left(1 + \frac{a^2}{16} \right)$$

siendo α el ángulo de amplitud máxima expresado en radianes.

Para a = 5° = 0.09 radian, el término correctivo es:

$$\frac{\alpha^2}{16} = \frac{0.0081}{16} = 0.0005$$

o sea, que influye solamente 5 diez milésimos de T, valor que, en genen no se alcanza a apreciar en experiencias de poca duración.

§ 87.—Movimiento circular uniforme.

Sellama movimiento circular uniform

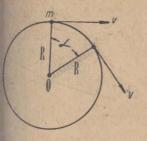


Fig. 197.—Movimiento circular uniforme.

al de un punto que se mueve sobre una circunferencia, recorriendo arcos iguales en tiempos iguales. Radio vector es el que une el centro de la circunferencia con el punto móvil. Velocidad angular es el ángulo barrido por el radio vector en la unidad de tiempo. Si recorre un ángulo α en el tiempo t, la velocidad angular es:

$$\omega = \frac{\alpha}{t}$$
 [9]

Midiendo a en radianes resulta:

$$[\omega] = \frac{1}{\text{seg}}$$
 [10]

porque el radián es magnitud sin dimensión (o dimensión cero), pues es el cociente de dos longitudes.

La velocidad numérica v es la longitud del arco descrito en unidad de tiempo, y es constante.

La velocidad del punto está representada por un vector, que cada instante es tangente a la trayectoria, y cuyo módulo la velocidad numérica; se llama velocidad tangencial.

Como la medida de un arco es igual al producto del ángulo por el radio, resulta:

$$\mathbf{v} = \omega \mathbf{R} \tag{11}$$

Midiendo R en metros, resulta, en virtud de [10]

$$[v] = \frac{m}{\text{seg}}$$
 [12]

Es interesante destacar que en este movimiento, como es miforme, la velocidad numérica es constante, y la a c e l e r a c i ó n n u m é r i c a es nula, o sea, no hay aceleración en la lirección de la tangente: la a c e l e r a c i ó n t a n g e n i a l es n u l a. Pero el vector velocidad no es constante, pues si bien su módulo no varía, cambia constantemente de dirección. Pasamos del vector velocidad V_1 , en un punto cualquiera, al V_2 en un punto próximo, sumando

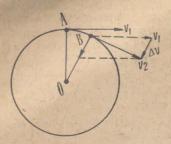
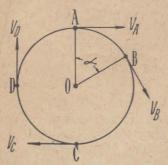


Fig. 198.—Variación del vector velocidad en el movimiento circular uniforme.

el pequeño vector ΔV. Para un arco AB cuya longitud se acerca a cerco, ΔV está dirigido normalmente a la trayectoria, o, lo que es lo mismo, dirigido hacia el centro de curvatura. Hay, por lo tanto, aceleración normal (fig. 198).


Debemos hacer notar que estos

Debemos hacer notar que estos razonamientos podemos aplicarlos a cualquier trayectoria curvilínea, aunque no sea una circunferencia.

Nos proponemos calcular la aceleración normal o centrípeta, es decir, dirigida hacia el centro de curvatura.

Para ello consideremos el movimiento sobre la circunferencia de radio R y centro O. Imaginemos el móvil en A, y a

partir de un punto cualquiera 0', tomemos un vector paralelo al que representa la velocidad en A (fig. 199).



Fig. 199.—Aceleración en el movimiento circular uniforme. Hodógrafo.

Cuando el móvil está en otra posición tal como B, el vector V habrá girado de un ángulo a, igual al que ha girado el radio vector de A. De tal modo, cuando el móvil recorre la circunfe-

rencia A B C D A, el extremo del vector velocidad recorre una circunferencia de radio V. La cuerda $\mathrm{MM_1}$ es el valor ΔV del incremento de la velocidad $\mathrm{V_A}$ para pasar a $\mathrm{V_B}$. El cociente $\frac{\mathrm{MM_1}}{\mathrm{t}}$ de la cuerda por el tiempo empleado en pasar de A a B da la velocidad media del punto M, pero a su vez ese cociente es $\frac{\mathrm{MM_1}}{\mathrm{t}} = \frac{\Delta \, \mathrm{V}}{\mathrm{t}}$, que, por lo tanto, mide la aceleración media de A. Se comprende que tomando intervalos de tiempo cada vez más pequeños, dicho cociente medirá: por una parte, la velocidad de M sobre su trayectoria, y por otra parte, la acelera-

vez más pequeños, dicho cociente medirá: por una parte, la velocidad de M sobre su trayectoria, y por otra parte, la aceleración de A. Esta velocidad será tangente en M a la circunferencia de radio V, y corresponde sobre la trayectoria de A a la dirección del radio. Luego, representa la aceleración centripeta del movimiento circular uniforme.

Es fácil calcular su valor; la velocidad angular del vector OM es igual a la velocidad angular ω del móvil A, Su velocidad tangencial será el producto de la velocidad angular por el radio (fórmula [11]), que en este caso es V; luego:

$$a = \omega . V \omega R \qquad [13]$$

y en virtud de [11]:

$$a = \frac{V^2}{R} = \omega^2 R \tag{14}$$

fórmula que permite calcular la aceleración centrípeta en el movimiento circular uniforme.

Recalcamos que esta aceleración no modifica el módulo sino la dirección del vector velocidad. Existe en todo movimiento curvo aunque sea uniforme (1).

Ejemplo: Un cuerpo se mueve con velocidad 3 m/seg sobre una circunferencia de radio 2 m; la aceleración centrípeta es:

$$a = \frac{V^2}{R} = \frac{3^2 \left(\frac{m}{\text{seg}}\right)^2}{2m} = 4.5 \frac{m}{\text{seg}^2}$$

El tiempo T, que el móvil emplea en dar una vuelta completa, se llama período. El número de vueltas $n=\frac{1}{T}$, que da

en una unidad de tiempo se llama frecuencia. Por la fórmulas vistas, es fácil deducir que:

$$\omega T = 2 \pi$$

$$\therefore \omega = \frac{2 \pi}{T} = 2 \pi n$$
[15]

además:

$$a = \frac{V^2}{R} = \omega^2 R = \frac{4 \pi^2}{T^2} R$$
 [16]

fórmulas útiles en las aplicaciones.

§ 88.—Fuerza centrípeta y centrífuga.

Aplicando los conceptos de la dinámica, si en el movimiento hay aceleración, habrá fuerza.

⁽¹⁾ El lugar geométrico de las sucesivas posiciones del extremo del vector velodad, tomado a partir de un punto O' del plano, se llama hodógrafo del movimiento. El ganto O' es el polo del hodógrafo.

Si el móvil tiene masa m, actuará una fuerza centrípeta.

$$f = ma = m \frac{V^2}{R}$$
 [17]

o también:

$$f = m \omega^2 R = \frac{4 \pi^2}{T^2} m R$$
 [18]

Esta es la fuerza que ejerce sobre el móvil el vínculo que le hace seguir su trayectoria circular. Así, por ejemplo, si hacemos girar una piedra atada en el extremo de un hilo, la trayectoria será una circunferencia, porque el hilo ejerce sobre la piedra una fuerza centrípeta que la mantiene equidistante del centro. Cuando un tren toma una curva, es la fuerza que ejercen los rieles sobre la rueda, dirigida hacia el centro de curvatura, la que le obliga a seguir su travectoria curvilínea

Por el principio de acción y reacción, sabemos que esa fuerza centrípeta origina una reacción igual y contraria que es la fuerza centrifuga. Tal es la que en nuestros ejemplos ejerce la

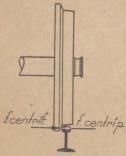
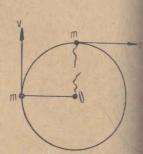



Fig. 200.-Fuerzas centripeta y centrifuga entre el riel y la rueda en una curva.

piedra sobre el hilo o la de la rueda sobre el riel. Pero no debe olvidarse que la fuerza centrífuga es una reacción, que sólo existe mientras existe la acción. centrip Así, si en el ejemplo de la piedra atada al hilo, este se corta, des- Fig. 201. — Suprimida la aparecen la fuer- fuerza centripeta el mon centrífuga al mismo tiempo, de mo-

za centrípeta y la sigue en la dirección de la tangente.

do que el cuerpo continúa moviéndose por inercia en la dire ción de la tangente.

Los aparatos de la figura 202 permiten comprobar las fórmulas establecidas. En el primero, los cilindros P1 y P2 quede rán en su posición, aunque se haga girar el conjunto a gra velocidad, cuando $m_1r_1=m_2r_2$, puesto que ω es igual para am bos y las fuerzas centrífugas son (fórmula [18])

En el segundo se observa un aplanamiento de los aros metálicos, pues la fuerza centrífuga es mayor para los puntos en que r es mayor.

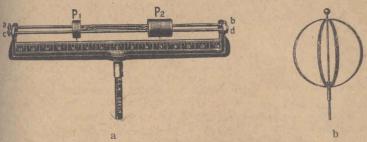


Fig. 202.—Aparatos para experiencias sobre fuerza centrifuga.

§ 89.—Dirección de la vertical.

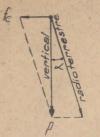
Sabemos que todo cuerpo colocado sobre la superficie terrestre está sometido a la acción de su peso. La dirección de esta fuerza se determina con la plomada, y corrientemente se dice que está dirigida hacia

ac Property of the second of t

el centro de la tierra. Sin embargo, eso no es rigurosamente exacto, pues el cuerpo se encuentra sometido, por una parte a la atracción de la tierra, dirigida hacia su centro, y por otra a una fuerza centrífuga que crece del polo hacia el ecuador.

En el polo sólo actúa la atracción de la tierra. En el ecuador la fuerza centrífuga es directamente opuesta a la atracción y si llamamos a la aceleración que produciríaria sólo la atracción terrestre y a_c la aceleración centrífuga se verifica: $g = a - a_c$.

Pero se ha medido g=978,07 cm/seg² y conociendo el radio terrestre y el tiempo T de revolución se calcula:


Fig. 203.—Desviación de la vertical:

 $a_c = 3,47 \text{ cm/seg}^2$

luego resulta

$$a = g + a_c = 981,54 \text{ cm/seg}^2$$

valor que se obtendría sin fuerza centrífuga. Es decir: que la fuerza centrífuga disminuye aproximadamente en $\frac{1}{289}$ la atracción terrestre en el ecuador.

a latitud \$ -45° x-12

Fig. 204.—Angulo de la vertical con el radio terrestre. Como la fuerza centrífuga es proporcional al cuadrado de la velocidad angular, si la tierra girara sobre su eje con velocidad $\sqrt{289} = 17$ veces mayor, los cuerpos no pesarían en el ecuador.

A cualquier otra latitud, la aceleración centrifuga está contenida en el plano del paralelo y es proporcional a su radio:

En este caso, la vertical, definida por la direción de la plomada, no coincide con el radio perestre. A 450 de latitud se tiene una desviación α de 12 minutos de arco.

§ 90.—Movimiento oscilatorio armónico.
a) elongación.

El movimiento de la proyección sobre un eje, de un movimiento di cular uniforme se llama movimiento o scilatorio as mónico.

Sea P la posición, en el instante t, de un punto móvil sobre la circunferencia de radio R, siendo ω la velocidad angular, y P_o la posición correspondiente a t = 0. Proyectamos sobre el eje AA y estudiamos el movimiento de la proyección M. (fig. 205).

La distancia MO = e la llamamos e l o n g a c i ó n y su valor será:

$$e = R sen POB$$
 [19

pero el ángulo POB es

$$\alpha = POB = \alpha_0 + \omega t$$
 [20]

luego:

$$e = R sen (\omega t + \alpha_0)$$
 [21]

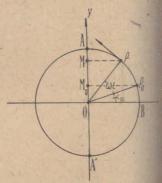


Fig. 205.—Movimiento oscilato rio armónico.

fórmula que caracteriza al movimiento oscilatorio armónico. Se observa que e varía desde +R a -R, o sea, que M se mueve de A a A'.

Como hemos visto: $\omega=\frac{2\pi}{T}$; luego, puede también escribirse:

$$e = R \operatorname{sen} \left(\frac{2\pi t}{T} + \alpha_0 \right)$$

La constante o se llama pulsación del movimiento armónico.

R es la amplitud.

 $\alpha = \omega t + \alpha_0$, ángulo de fase.

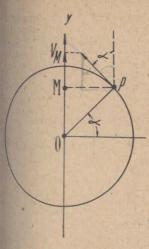


Fig. 206.—Velocidad en el movimiento armónico.

T = período.

 $\alpha_0 = \text{fase inicial} = \text{ángulo de fase para } t = 0.$

b) Velocidad.

La velocidad del punto M la calcularemos teniendo en cuenta que M es la proyección de P, y por lo tanto su velocidad será la proyección sobre AA' de la velocidad de P, cuyo valor es

$$v_p = \omega R$$

Pero v_p forma con el eje AA' un ángulo igual al ángulo $\alpha=\omega~t+\alpha_o$ (fig. 206) luego:

$$v = v_p \cos \alpha = \omega R \cos (\omega t + \alpha_0)$$
 [23]

es decir, llamando v a la velocidad de M

$$v = \omega R \cos (\omega t + \alpha_0)$$
 [24]

esto nos indica que la velocidad es nula para $_0$ t + $\alpha_{\rm o}=90^{\circ}$ o sea cuando la elongación es máxima (en A y A'), y es máxima igual a $v_{\rm P}$; cuando $_{\rm M}$ pasa por O.

e) Aceleración.

La aceleración de M será también igual a la proyección de la ace-

Esta es:

$$a_c = \frac{V_{n^2}}{R} = \omega^2 R$$

y el ángulo que forma con la dirección positiva del eje de proyección es:

$$OPY = 90^{\circ} + a$$

La aceleración del punto M será:

$$a = a_c \cos OPY = -a_c \sin \alpha$$

y reemplazando a_c

$$a = -\omega^2 R \operatorname{sen} \alpha = -\omega^2 R \operatorname{sen} (\omega t + \alpha_n)$$
 [25]

$$\mathbf{a} = -\mathbf{\omega}^* \mathbf{e}$$
 [26]

esta fórmula nos dice que la aceleración es proporcional a la elongaciones

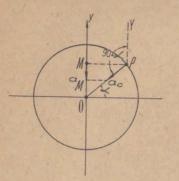


Fig. 207.—Aceleración en el movimiento armónico.

y de signo contrario, o sea, que está di gida siempre hacia el centro O, es máxin en A y A', y nula en O.

d) Fuerza.

La fuerza que actúa sobre M. expermentará las mismas variaciones que aceleración, y si el punto M es un punimaterial de masa m, la fuerza será:

$$f = m a = -m \omega^2 R sen (\omega t + \alpha_0)$$
 [2]

luego:

$$f = -m \omega^2 e$$
 [2

Como se ve, también la fuerza es pr porcional a la elongación.

e) Representación gráfica.

Si representamos gráficamente la fórmula de la elongación, tomand sobre un eje *elongación* y sobre el otro *tiempo*, se obtiene una curva que se llama sinusoide (fig. 208).

Tomamos luego la ecuación de la velocidad, y representamos v com función de t, y lo mismo hacemos con la aceleración. Se obtienen la curvas que figuran a continuación suponiendo fase inicial nula.

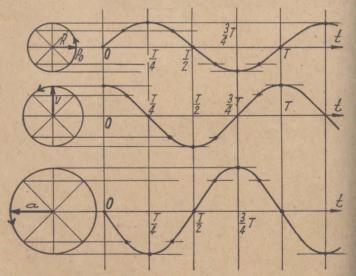


Fig. 208.—Gráficos del movimiento armónico.

Se observa que la curva de las elongaciones puede servir para la aceleraciones con un simple cambio de escalas en las ordenadas. La

a velocidad se obtiene cambiando la escala, y corriendo la curva de on valor -

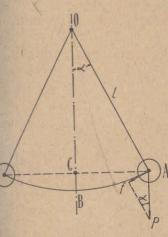


Fig. 209.

orio armónico. Siendo

§ 91.—Fórmula del péndulo ideal (§ 83 fórmulas 3 y 4). Se acaba de ver que en el movimiento oscilatorio armónico, la fuerza es proporcional a la elongación y de sentido contrario, siendo ω2 el factor de proporcionali-

En el péndulo ideal, la fuerza f (figura 209) se puede calcular por semejanza de los triángulos AfP y OAC, siendo:

$$f = \frac{P}{l} \overline{AC}$$
 [29]

y como P y l son constantes, resulta que f es proporcional a CA, y la aceleración:

$$\frac{f}{m} = a = \frac{g}{l} \overline{AC}$$
 [30]

Para pequeñas amplitudes po-demos reemplazar el movimiento sobre el arco ABA', por el movimiento sobre la cuerda ACA' y por la formula [30] este movimiento será oscila-

$$\omega^2 = \frac{g}{1}$$

$$\omega^2 = \frac{4 \pi^2}{\mathrm{T}^2} = \frac{g}{l}$$

le donde se deduce la fórmula

$$T = 2 \pi \sqrt{\frac{l}{g}}$$

a empleada en el § 83.

§ 92. Movimiento de los planetas - Leyes de Kepler.

Los planetas son astros que giran alrededor del Sol, consituyendo, con la Tierra, lo que llamamos el sistema solar. Los diferenciamos de las estrellas porque se mueven con relación lo que llamamos el cielo de estrellas fijas. Por otra parte, al

determinar sus distancias a la tierra, se comprueba que se encuentran mucho más cercanos que la estrella más próxima.

Los planetas conocidos hasta ahora, en orden de su distancia al Sol, son:

Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno. Además, hay un conjunto de pequeños cuerpos celestes que se llaman asteroides, la mayoría de los cuales se encuentran entre Marte y Júpiter. (1)

Tycho Brahé observó los movimientos de los planetas, y de sus observaciones y medidas dedujo Kepler las leyes que llevan su nombre y cuyo enunciado es el siguiente:

- 1º) Las órbitas de los planetas son elipses, de las cuales el sol ocupa uno de los focos.
- 2°) Las áreas barridas por el radio vector, que une el centro del sol con el de un planeta, son proporcionales a los tiempos (velocidad areal constante).
 - 3º) Los cuadrados de los tiempos de

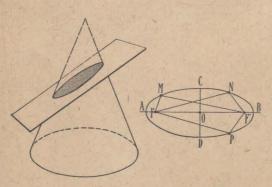


Fig. 210.—La elipse como intersección de un cono con un plano oblicuo con respecto al eje y como lugar geométrico.

revolución son proporcionales a los cubos de los ejes mayores de las órbitas.

La elipse es la sección de un cono recto circular con un plano oblicuo con respecto al eje.

Es el lugar geométrico de los puntos, cuya suma de distancias a dos puntos fijos, llama-

dos focos, es constante. En la figura 210 es:

$$FM + MF' = FN + NF' = FP + PF' = etc.$$
 [31]

⁽¹⁾ Desde 1930 se considera la existencia de un pequeño planeta transneptuniano denominado Plutón y observable en fotografías como un astro de 154 magnitud.

Se llama excentricidad de la elipse a la relación

$$e = \frac{OF}{OA}$$
 [32]

En las órbitas de los planetas la excentricidad es muy peueña, lo que significa que los focos están muy próximos y la lipse se aproxima a una circunferencia. La recta AB que une

os focos es el eje mayor.

La segunda ley nos dice que la velocidad del planeta sobre u trayectoria no es constante, pues del hecho de que las áreas carridas por el radio vector son iguales en tiempos iguales, leducimos que cuando pasa por los puntos de su trayectoria nás lejanos del Sol, su velocidad debe ser mínima. En la figura 211, si AB y CD son arcos recorridos en tiempos iguales, es:

área \overrightarrow{ASB} = área \overrightarrow{CSD} y como \overrightarrow{CS} > \overrightarrow{AS} debe ser, por tanto:

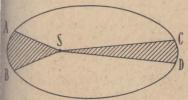


Fig. 211.—Ley de las áreas.

arco AB > arco CD.

La tercera ley nos dice que si T_1 y T_2 son los tiempos que tardan los planetas en recorrer sus órbitas, y d_1 , d_2 son los respectivos ejes mayores, se cumple la condición.

$$\frac{T_{1^2}}{T_{2^2}} = \frac{d_{1^3}}{d_{2^3}}$$
 [33]

Así, por ejemplo:

Tierra: $T_1 = 1$ año; $d_1 = 1$ unidad astronómica

Júpiter: $T_2=11,862$ año ; $d_2=5,2028$ unidad astronómica

se verifica:

$$\frac{T_{1^2}}{T_{2^2}} = \frac{1^2}{11.862^2} = \frac{1}{141}$$

$$\frac{d_{1^{3}}}{d_{2^{3}}} = \frac{1^{3}}{5.2028^{3}} = \frac{1}{141}$$

§ 93.—Ley de la gravitación universal.—De las leyes de Kepler dedujo Newton su ley de la gravitación universal. En

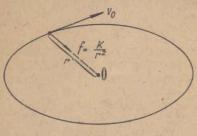


Fig. 212.

efecto, si se plantean las ecuaciones de la mecánica para estudiar el movimiento de un cuerpo lanzado con determinada velocidad inicial v₀, y sometido a la acción de una fuerza dirigida siempre hacia cierto punto fijo, en forma tal que disminuya con el cuadrado de la distancia, se encontrará que dicho móvil cumple las dos primeras leles de Kepler, y si son varios

los cuerpos lanzados, se cumple entre ellos la tercera.

En consecuencia, los planetas se mueven como si fueran atraídos por el Sol con una fuerza proporcional a su masa e inversamente proporcional al cuadrado de la distancia. Extendiendo el resultado, Newton enuncia su ley de la gravitación universal:

Todo pasa como si los cuerpos se atrajeran proporcionalmente al producto de sus masas y en razón inversa del cuadrado de sus distancias:

La expresamos por la fórmula:

$$f = c \frac{MM'}{r^2}$$

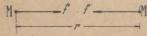


Fig. 213.—Atracción de masas.

c es una constante universal, que sólo depende del sistema de unidades.

En unidades c. g. s:.

$$c = 6.67 \times 10^{-8} \frac{cm^3}{g seg_2}$$

Su dimensión debe ser tal que al aplicarla a la fórmula [34] resulte f en unidades de fuerza.

§ 94.—Determinación de c — Masa de la tierra.—La fórmula de Newton se comprueba en el movimiento de los planetas y de sus satélites. La constante c se determina experimentalmente de varias maneras, pero vamos a referirnos solamente a la experiencia de Cavendish (1790), basada en el péndulo de torsión.

De un fino hilo metálico pende una varilla de madera de 2 m de longitud, en cuyos extremos lleva esferas de plomo de 750 gr. cada una; colocado esto dentro de una caja que evita el efecto de las corrientes de aire. Exteriormente dos esferas de plomo de 150 Kg. cada una, pueden aproximarse a las anteriores. Colocadas en la posición M-M (fig. 214a) alraen a las esferas pequeñas, provocando una torsión del péndulo que se observa con el microscopio A; llevadas luego a la posición simétrica, se lee nuevamente la posición de equilibrio con lo cual se conoce 2 a.

Conocidas las características del hilo de suspensión, en base al ángulo es conoce la cupla que ha actuado, y por lo tanto las fuerzas de

atracción.

Baily repitió la experiencia en 1843, comprobando en cerca de 2.000 ensayos que la ley de Newton y el valor c son aplicables a cualquier substancia, incluso a la materia orgánica.

La constante c permite calcular la masa terrestre, pues, admitido que el peso de los cuerpos es debido a su atracción y como se demuestra que la atracción de una esfera es la misma que si la masa estuviera concentrada en su centro, imagi-

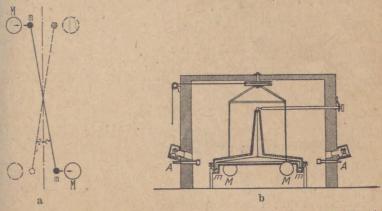


Fig. 214.—Método de Cavendish para determinar la constante de gravitación

nando un cuerpo que pesa 1 Kgr = 981 000 dinas, colocado sobre la superficie terrestre (d = 6 370 Km) y aplicando la ley de Newton se tiene:

981.000 dinas
$$\frac{1~000~\text{Mg}^2}{[6,370~10^8]^2~\text{cm}^2}~6.67~10^{-8}~\frac{\text{cm}^3}{\text{g}~\text{seg}^2}$$

y la masa terrestre resulta entonces:

$$M = 5.98 \times 10^{27} g$$

y su densidad media, en base al volumen:

$$D = 5.52 \frac{g}{cm^3}$$

Aplicación:

Calcular la fuerza de atracción que se ejerce entre dos esferas de 5862 g y 152 g respectivamente, cuyos centros distan 10,2 c.

$$f = 6.67 \times 10^{-8} \frac{5862 \times 152}{10,2^2} \text{ dinas} = 5.7 \times 10^{-4} \text{ dinas}$$
 $= 5.81 \times 10^{-7} \text{ gr} = 0.000582 \text{ mgr}$

§ 94a).—Variación de g con la latitud y la altura.

Hemos establecido en el § 52 que el valor de g depende de la latitud, teniendo un valor máximo $g_{90}=983,232~{\rm cm/seg^2}$ en los polos y un valor mínimo $g_0=978,046~{\rm cm/seg^2}$ en el ecuador.

Esta variación se debe a dos causas: diferencias de acción gravitatoria por los diferentes valores del radio terrestre, y distinta aceleración centrífuga en cada punto de la tierra, pues está vinculada al radio del paralelo que pasa por el lugar, de acuerdo con lo expuesto en el § 89.

El valor de la aceleración debida a la atracción en el

ecuador es:

$$a_0 = g_0 + a_c = 981,54 \frac{cm}{seg^2}$$

En el polo es, en cambio:

$$a_{90} = g_{90} = 983,232 \frac{cm}{seg^2}$$

Por la ley de gravitación será:

$$\frac{a_0}{a_{90}} = \frac{g_0 + a_0}{g_{90}} = \frac{(R_{90})^2}{(R_0)^2}$$

Siendo R_0 y R_{90} los radios ecuatorial y polar de la tierra Para estudiar la variación del valor de la aceleración de atracción gravitatoria con la altura, puede aplicarse fórmula análoga, pero para hacerlo con la aceleración total g, de la gravedad, ha de tenerse en cuenta la aceleración centrípeta en cada lugar.

CAPÍTULO VIII

ROTACIÓN DE UN CUERPO RÍGIDO (1)

§ 95.—Rotación uniforme alrededor de un eje.

1.—Se realiza cuando cada punto del cuerpo describe con movimiento uniforme, una circunferencia situada en un plano perpendicular al eje EE' (fig. 215).

El punto M describe la circunferencia CC' con movi-

miento uniforme.

El radio OM, entretanto, gira ángulos iguales en tiempos iguales y lo mismo sucede con todo otro radio como OP y O₁N.

El plano EMNE' gira también el mismo ángulo que los radios que contiene.

2.—Velocidad angular.—Se llama velocidad angular del cuerpo en rotación uniforme, al ángulo descripto en la unidad de tiempo por uno de sus planos que contiene al eje.

que contiene al eje. Si llamamos T al tiempo de una revolución completa la velocidad angular en radianes

por segundo será:

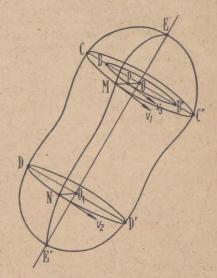


Fig. 215.—Cuerpo rigido en rotación.

$$\omega = \frac{2 \cdot \pi}{T}$$
 [1]

Conociendo el número de vueltas por segundo: $n=\frac{1}{T}$, la

⁽¹⁾ Los temas tratados en este capítulo no figuran en los programas oficiales de esseñanza secundaria.

velocidad angular se expresa por:

 $\omega = 2 \pi n$

La Tierra gira sobre su eje con movimiento uniforme; todos los meridianos giran un ángulo de 360° en un día sideral, lo que equivale a una velocidad angular de 15° por hora, o 15" por segundo de tiempo sidéreo.

$$\omega = \frac{15''}{\text{seg.}} = \frac{15}{206.265} \frac{\text{radian}}{\text{segundo}}$$

3.—Vector velocidad angular.

Se representa la velocidad angular por un vector cuya dirección es la del eje de rotación y cuyo sentido es el del avance de un tirabuzón que se hace dar vuelta para el mismo lado que gira el cuerpo (igual sentido de rotación). (1).

Fig. 216.—Vector velocidad angular - Convención de signos.

Desde el extremo de este vector se ven girar los puntos del cuerpo en rotación en sentido contrario al de las agujas de un reloj.

La figura 216 representa un trompo bailando. El vector OA representa en una cierta escala a la velo-

cidad angular $\omega = \frac{2\pi}{T} = 2\pi$ n;

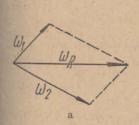
la flecha curvada da el sentido de la rotación.

Debajo, el tirabuzón aclara la regla dada para el sentido del vector.

La figura 217 representa la Tierra en rotación; el vector

sentido adopta- Fig. 217.-Rotación de

do, se dirige hacia el polo Norte.


⁽¹⁾ El sentido positivo del vector ω es, en principio, arbitrario; pero el adoptato aquí concuerda con el establecido para el momento de las cuplas (§ 31).

El módulo $|\omega| = \frac{15^{"}}{\text{seg.}}$ se ha representado tomando un segmento OA de 15 mm, o sea con la escala (1): $\frac{1^{"}}{\text{seg.}} = 1$ mm.

Cuando un cuerpo está sometido a dos rotaciones simultáneas, se puede demostrar que la velocidad angular de la rotación resultante de ambas se obtiene, en cada instante, aplicando la regla del paralelogramo a los vectores representativos de las velocidades angulares de los movimientos componentes (fig 218a).

Análogamente una velocidad angular se puede descom-

poner en otras dos de direcciones dadas (fig. 218b).

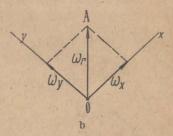


Fig. 218 a.—Composición de rotaciones uniformes. b.—Descomposición de una rotación uniforme.

4.—Velocidad de cada punto.

Para todos los puntos del cuerpo en rotación la velocidad angular es la misma, pero cada uno tiene su velocidad de traslación propia, que depende de su distancia al eje.

En la figura 215 los puntos M, N y P describen en igual tiempo circunferencias de radios $OM = r_1$, $O_1N = r_2$ y $OP = r_3$.

Sus velocidades están representadas por vectores, v_1 , v_2 y v_3 , tangentes a las circunferencias correspondientes y cuyos módulos serán:

$$v_1 = \frac{2 \pi r_1}{T} = \frac{2 \pi}{T} r_1 = \omega r_1$$

 $v_2 = \omega r_2 \; ; \; v_3 = \omega r_3$

En general: $v = \omega \cdot r$

181

⁽¹⁾ En rigor ω vale 15" por segundo sideral, pero prácticamente puede tomarse el mismo valor refiriéndose, al segundo solar medio (ver \S 41).

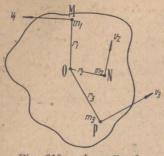


Fig. 219.— $I = \Sigma mr^2$.

§ 96.—Energía cinética de un cuerpo en rotación.

1.—Para determinar la energía cinética de un cuerpo en rotación hay que hacer la suma de las energías cinéticas de sus partículas. Llamando m₁, m₂, m₃, a las masas de elementos del cuerpo y v₁, v₂, v₃ las respectivas velocidades se tiene (figura 219).

$$E\,'{}_c = \frac{1}{2}\; m_1\, v_1{}^2 + \frac{1}{2}\; m_2\, v_2{}^2 + \frac{1}{2}\; m_3\, v_3{}^2 + \dots \, . \label{eq:energy_energy}$$

o sea simbolizando con Σ $\frac{1}{2}$ m v^2 a la suma del segundo miembro:

$$E'_c = \Sigma \frac{1}{2} m v^2$$
 [4]

y teniendo en cuenta la fórmula [3]

$$E'c = \Sigma \; \frac{1}{2} \; m \; \omega^2 \; r^2$$

Sacando en todos los términos de la suma los factores comunes $\frac{1}{\omega}$ ω^2 resulta:

$$E'_{c} = \frac{1}{2} \omega^{2} \Sigma m r^{2}$$

2.—Momento de inercia.

A la suma de los productos de los elementos de masa por los cuadrados de las distancias al eje, representada por el símbolo: Σ m r², se la llama momento de inercia del cuerpo.

El momento de inercia, como las distancias r, depende del eje de rotación elegido; por eso se dice: momento de inercia del cuerpo con respecto a tal o cual eje.

Siendo suma de productos de masas por distancias al cuadrado, el momento de inercia se mide en gramo-centímetro cuadrado (g.cm²).

Simbolizaremos al momento de inercia con la letra I; sus funciones en los movimientos de rotación son análogas a las de la masa en las traslaciones.

La energía cinética del cuerpo en rotación se puede ex-

presar en virtud de la fórmula [5], como sigue:

$$E'_{c} = \frac{1}{2} I \omega^{2}$$
 [6]

Esta fórmula es análoga a $E_c=rac{1}{2}$ M v^2 que representa

la energía cinética de un cuerpo de masa M trasladándose con velocidad v (§ 71).

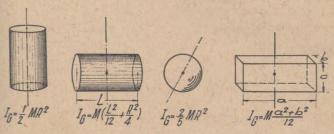


Fig. 220.-Momentos de inercia baricéntricos.

Los valores de los momentos de inercia de cuerpos homogéneos de forma geométrica se pueden calcular con ayuda de las matemáticas. La figura 220 indica los valores correspon-

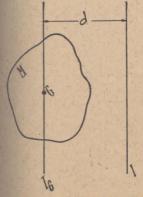


Fig. 221.—Regla de Steiner.

dientes a ejes que pasan por el baricentro (centro de masa) G de algunos cuerpos cuya masa se representa por M.

3.—Regla de Steiner.

En base a la definición establecida, se demuestra que el momento de inercia I de un cuerpo respecto a un eje cualquiera es igual a la suma del momento de inercia I_a respecto al eje paralelo que pasa por el centro de gravedad G con el producto de la masa M del cuerpo por el cuadrado de la distancia d entre los ejes (fig. 221).

$$I = I_G + Md^2 \qquad [7]$$

Esta propiedad se conoce con el nombre de regla de Steiner.

§ 97.-Movimiento de rotación uniformemente acelerado.

1.—Imaginemos un volante (figura 222) en cuyo eje cilíndrico de radio $R=\mathrm{OA}$ está arrollado un hilo del que pende un peso p.

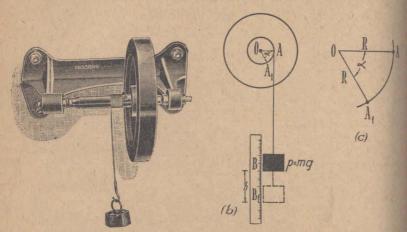


Fig. 222.-Movimiento de rotación acelerado, en un volante.

Este hilo que no puede resbalar por tener un extremo fijo al eje, trasmite al volante la fuerza vertical p aplicada en el punto A (figura 222 b). Dicha fuerza tiene un momento M = p.R con respecto al eje 0, el

cual, no siendo equilibrado, hará girar al volante.

En un cierto tiempo t, el peso p pasará de la posición B a la posición B_1 descendiendo con movimiento uniformemente acelerado vertical. Entretanto el punto A del volante pasará a la posición A_1 , tal que $AA_1 = BB_1$.

Llamando a a la aceleración de caída de p se tiene B $B_1 = \frac{1}{2}$ a f

El ángulo α girado por el radio OA en el mismo tiempo será:

$$\alpha = \frac{AA_1}{R} = \frac{BB_1}{R} = \frac{1}{2} \frac{a}{R} t^2.$$

Como el movimiento de caída de p no es uniforme, tampoco lo será el movimiento de A.

La velocidad angular media en el intervalo t considerado será:

$$\omega_m = \frac{\alpha}{t}$$

La velocidad angular instantánea habrá que definirla como el valor que toma la relación de pequeños incrementos Δ_{α} de ángulo con los respectivos Δ_{t} cuando estos se hacen infinitésimos.

Entre las velocidades angulares y las tangenciales de traslación de A, se cumple siempre la relación:

$$\omega = \frac{\mathbf{v}}{\mathbf{R}} \tag{8}$$

2.—Aceleración angular.

Como el movimiento de A, igual que el de B, es uniformemente acelerado, la velocidad adquirida v será proporcional al tiempo y habrá una

aceleración constante a $=\frac{v}{t}$

Siendo constante este valor, también lo será su cociente por el radio:

$$\varphi = \frac{a}{R} = \frac{v}{R.t} = \frac{\omega}{t}$$
 [9]

Este valor es la aceleración angular del movimiento de rotación. En este caso tiene valor constante y representa el aumento de velocidad angular en la unidad de tiempo.

3.-Ecuación del movimiento.

Aplicando el teorema de las fuerzas vivas podemos establecer la ecuación fundamental del movimiento. En efecto, el trabajo de la fuerza p aplicada es:

$$L = p.\frac{1}{2} a t^2 = \frac{1}{2} p. R \phi t^2$$

y como pR = M, valor constante del momento aplicado:

$$L = \frac{1}{2} M \phi t^2$$

Prescindiendo de la pesa y refiriéndonos sólo a la fuerza p aplicada por el hilo al volante, diremos que ese trabajo es igual a la energía cinética adquirida por éste, la que si llamamos I a su momento de inercia es:

E'c =
$$\frac{1}{2}$$
 I $\omega^2 = \frac{1}{2}$ I ϕ^2 t²

y por tanto:

$$\frac{1}{2} M \phi t^2 = \frac{1}{2} I \phi^2 t^2$$

de donde, simplificando:

$$M = I \varphi$$
 [10]

Esta es la ecuación fundamental de las rotaciones, análoga a la de Newton para las traslaciones:

$$F = m a$$

La fuerza F es reemplazada por el momento M; la masa m por el momento de inercia I y la aceleración a por la aceleración angular o.

§ 98.—Péndulo físico o compuesto.

1.—Un cuerpo cualquiera suspendido de un eje O está en equilibrio

cuando la vertical del centro de gravedad G pasa por él. (Figura 223). Separado de esta posición el peso P aplicado en G' origina un momento con respecto a 0; el valor de este momento es:

 $M \equiv P \times G'M = mg d. sen a$

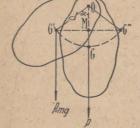


Fig. 223.-Péndulo fisico.

$$M \equiv P \times GM = My \text{ d. sen } \alpha$$

El cuerpo vuelve a la posición de equilibrio, pero a causa de la energía cinética adquirida no se detiene en ella sino que sigue hasta que el centro de gravedad llega a G", posición si-métrica de G', transformando toda su energía cinética en potencial.

El movimiento sigue indefinidamente si no hay roces; cada punto realiza un movimiento

análogo al de un péndulo simple.

Si la amplitud es pequeña el movimiento del punto G puede asimilarse a un movimiento rectilíneo armónico sobre la recta G'G". Llamando a la

elongación: x = G'M, el período del movimiento es:

$$T = 2 \pi \sqrt{\frac{x}{a}}$$
 (Ver § 90)

El valor de la elongación es:

$$x = \overline{G'M} = d \operatorname{sen} \alpha$$

En cuanto a la aceleración correspondiente a la podemos sacar en base al cálculo de la aceleración angular o del punto G'.

De la fórmula [10] se deduce:

$$\phi = \frac{M}{I}$$

siendo I el momento de inercia del péndulo respecto al eje de rotación y M el momento aplicado.

Por tanto:
$$\varphi = \frac{mg \ d \ sen \ \alpha}{I}$$

y la aceleración a es:

$$a = \phi.d = \frac{mg \ d^2 \ sen^{\alpha}}{I}$$

El período de oscilación resulta así:

$$T = 2 \pi \sqrt{\frac{d \cdot \sin \alpha}{mg \cdot d^2 \cdot \sin \alpha}}$$

y simplificando:

$$T = 2 \pi \sqrt{\frac{I}{mg d}}$$
 [12]

2.-Péndulo simple sincrónico. - Hemos visto en el (§ 85) que se llama péndulo simple sincrónico de un péndulo físico dado a aquel que oscila con igual período que éste.

La condición a cumplir será por tanto:

$$2 \pi \sqrt{\frac{l}{g}} = 2 \pi \sqrt{\frac{I}{mg d}}$$

o también simplificando:

$$i = \frac{I_1}{md} \tag{13}$$

3.—Péndulo reversible.

Una barra con dos cuchillas O1 y O2 y dos masas M1 y M2 movibles constituye un péndulo reversible.

Desplazando convenientemente las masas movibles se llega a conseguir que suspendido el péndulo tanto de O_1 como de O_2 oscile con el mismo período T.

Se demuestra que en este caso la distancia O1 O2 es igual a la longitud del péndulo simple sincrónico:

$$O_1 \ O_2 = 1$$

Es útil para determinar con exactitud el valor de g, que se calcula así con la fórmula del péndulo simple:

$$g = \frac{4 \pi^2}{T^2} \ l = \frac{4 \pi^2}{T^2} \ \overline{O_1 \ O_2}$$

§ 99.—Impulso.

Si en el caso de la figura 222, después de desarrollarse el hilo la pesa p cae al suelo, el volante seguirá moviéndose con movimiento unifor-

Fig. 224.— Péndulo reversible de Kater.

me, indefinidamente, si no hay resistencias de roce. En la práctica aunque éstas se reduzcan al mínimo empleando cojinetes con bolillas (§ 81), el volante se detiene después de un tiempo más o menos largo, porque su energía cinética se transforma en trabajo de las fuerzas de frotamiento, hasta anularse.

El caso es análogo al de un cuerpo lanzado sobre un plano horizontal, que teóricamente debería seguir en línea recta y conservar su velocidad. Mientras los roces no actúan en forma sensible el cuerpo conserva su impulso o cantidad de movimiento mv (\S 62).

En las rotaciones, la magnitud correspondiente es el vector impulso, de dirección y sentido coincidentes con los de la

velocidad angular ω y cuyo módulo vale:

$$J = I \omega$$
 [14]

Los cuerpos en rotación también mantienen, teóricamente, constante el valor del vector impulso mientras no actúan acciones externas sobre ellos.

Algunos ejemplos interesantes son brindados por cuerpos vivientes que voluntariamente pueden cambiar la distribución de sus masas y, por lo tanto, variar su momento de inercia respecto al eje de rotación.

Fig. 225.—Al abrir los brazos, disminuye la velocidad angular porque aumenta el momento de inercia. Se conserva el impulso.

Una persona colocada en un taburete de piano con una pesa en cada mano, a la que se hace girar dándole un cierto impulso, puede cambiar su velocidad angular.

Para esto le basta con separar o juntar los brazos (figura 225).

Siendo $I_1 < I_2$, debe tenerse $\omega_1 > \omega_2$, ya que la conservación del impulso exige que:

$$I_1 \omega_1 = I_2 \omega_2 \qquad [1]$$

En la intuición instintiva de esta propiedad están el secreto de los saltos mortales de los acróbatas y el arte de caer parados que se atribuye a los gatos.

Variando adecuadamente el valor de I por contracción y extensión de los miembros se arregla ω en forma

de tocar el suelo con los pies.

§ 100.—Ejes libres. Estabilidad en la rotación.

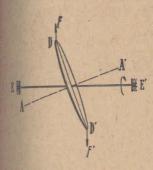


Fig. 226.—Efecto de la rotación alrededor de un eje cualquiera.

girando alrededor de dos ejes libres; siendo ambos ejes de simetría de masas lo son de las fuerzas centrífugas.

De los dos ejes libres indicados, el segundo tiene mayor grado de estabilidad. Bastaría hacer girar el cilindro en la primera posición (eje libre inestable), para ver que a la menor desviación se desplazaría hasta tomar la segunda posición.

Fig. 228.—Giróscopo con tres grados de libertad.

Imaginemos un volante DD' girando alrededor del eje EE' (figura 226), distinto de su eje de simetría

En los puntos D y D' se aplican fuerzas centrífugas que tienden a llevar al eje AA' del volante a coincidir con el EE'.

Si el cuerpo pudiera girar libremente alrededor de O cambiaría de posición en forma tal que los efectos de la fuerza centrífuga sobre todas sus partículas se equilibrasen.

Un eje que cumple esta condición

es un eje libre.

La figura 227 muestra un cilindro

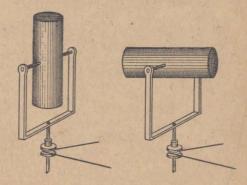


Fig. 227.—Ejes libres. - Posiciones de equilibrio.

§ 101.—Giróscopo.

1.—El giróscopo es un aparato ideado por Foucault con objeto de probar la existencia del movimiento de rotación de la Tierra.

Consta de un volante que gira alrededor de su eje de simetría que es un eje libre estable.

Los extremos del eje apoyan en dos cavidades de un soporte en forma de aro circular.

En el giróscopo de Foucault, una doble suspensión sobre pivotes y aros (suspensión cardánica) permite girar el soporte en todas direcciones sin ejercer ningún momento sobre el eje de rotación (figura 228).

Por medio de un hilo arrollado del que se tira en forma adecuada, se comunica una velocidad angular ω al volante. Siendo I su momento de inercia respecto al eje, su impulso es

$J = I \omega$

La figura 229 representa ambos vectores sobre un giróscopo esquemático.

Fig. 229.— Giróscopo esquemático.

No actuando ninguna acción exterior debido al soporte empleado, el eje del giróscopo, lo mismo que el vector impulso, se conservarán invariables.

Colocado el eje del giróscopo en dirección a una estrella fija (cosa que se observaba con un anteojo ligado al soporte y de eje óptico paralelo al de rotación del giróscopo), Foucault comprobaba que, después de un tiempo, el eje seguía dirigido a la estrella, pareciendo, en cambio, moverse respecto al soporte.

Dicho movimiento aparente del eje, comprebaba que la Tierra se había desplazado arras-

trando al soporte. El valor, la dirección y el sentido del desplazamiento permitían establecer que era debido a la rotación al rededor del eje terrestre.

Los desplazamientos medidos por Foucault fueron peque nos porque su giróscopo sólo andaba 40 minutos, pero posteriormente, empleando giróscopos en que el volante es el rotor de un motor eléctrico, se tuvieron grandes desplazamientos y comprobaciones definitivas.

2.—Las aplicaciones del giróscopo son hoy muy numerosas e interesantes, pero todas ellas basadas en los fenómenos de inercia que presenta.

En general, la dirección del eje y el impulso se conservan invariables, pero al actuar fuerzas exteriores, para modificarlos, se producen reacciones de inercia, que se aprovechan para obtener los más curiosos efectos.

Los giróscopos tienen formas diversas, pero siempre son constituídos por un cuerpo de revolución girando alrededor de su eje con velocidad angular ω grande. Un trompo girando rápidamente presenta fenómenos de inercia como un giróscopo.

3.—Tendencia al paralelismo.

Sea G el baricentro de un giróscopo cuya velocidad angular ω se representa por el vector GA, y supongamos que su eje está apoyado en O sobre un soporte (figura 230).

Fig. 230.—Precesión en el giróscopo pesado.

El peso P vertical y aplicado en G produce un momento que haría girar al cuerpo alrededor de un eje perpendicular al plano del díbujo, acercando el eje OA a la posición horizontal, si estuviera en reposo.

Pero, estando en movimiento, el giróscopo no hace tal rotación, sino que se mueve sacando su eje OA del plano del dibujo y llevándolo hacia atrás, tratando de ponerlo paralelo al vector representativo de la nueva rotación que se le quiere imponer. Inicia así un movimiento cónico del eje llamado precesión, eludiendo aparentemente la acción de la gravedad.

Foucault estableció esta propiedad con el nombre de principio de la tendencia al paralelismo, enunciándola como sigue:

"Si el eje de un toro en rotación es solicitado a girar alrededor de una recta, tiende a colocarse paralelamente a esta recta, de tal manera que las dos rotaciones sean del mismo sentido".

De acuerdo con este enunciado, si (xyz) es una terna de ejes cartesianos cuyo origen es el baricentro de un giróscopo que se mueve con velocidad $\omega = OA$ alrededor del eje de las x, una cupla que tratara de hacer pasar su eje a la posición OA' girando alrededor del eje Oy' (velocidad

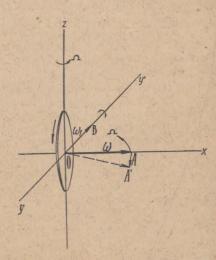
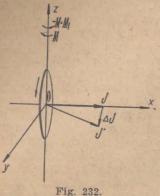



Fig. 231.—Reacción giroscópica.

 $\omega_1 = OB$), daría como resultado una rotación real Ω alrededor del eje OZ, tratando de llevar OA a coincidir con OB (ver figura 231).

Esta reacción giroscópica explica el movimiento de precesión.

o sea:

 $M = I.\phi$ [16

 $\triangle t$ es el tiempo en que se produce el incremento $\triangle J=JJ'$ de impulso y ϕ la aceleración angular media respectiva. El giróscopo produce una reacción igual

 $M = \frac{\Delta J}{\Delta t} = \frac{\Delta (I.\omega)}{\Delta t} = I \frac{\Delta \omega}{\Delta t}$

provocada por un momento:

4.—Explicación elemental del fenómeno. Si $J=I_{\omega}$ representa el impulso del giróscopo, al pasar su eje de la posición OJ a la OJ', exige la adición de un vector $\Delta J=JJ'$ paralelo a OZ y que implica una rotación alrededor de este eje

y contraria de inercia que es el momento giroscópico: $M_1 = -M = -I \varphi$ que hace girar OJ, iniciando la precesión. (fig. 232).

§ 101 a.—Aplicaciones del giróscopo.

Se emplea el giróscopo utilizando su reacción de inercia ante las acciones exteriores, en diversos aparatos con los que

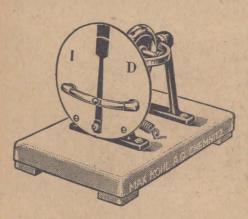


Fig. 233.—Modelo de indicador giroscópico de virajes, para avión.

se mantiene fija la dirección de un movimiento.

Tal sucede con el dispositivo de dirección de torpedos en que el giróscopo acciona timones mediante aire comprimido y mantiene el azimut de partida. Otro tanto hace el piloto mecánico para aviones que permite descansar al verdadero piloto y guía en plena obscuridad.

Se fabrican diversos aparatos con giróscopos para el vuelo a ciegas y estabilizadores para

combatir el efecto del oleaje en los navíos.

Se han construído también ferrocarriles monorrieles que realizan un equilibrio curioso ayudados por un giróscopo; y el efecto giroscópico se aplica en los proyectiles para mantener la dirección de su eje.

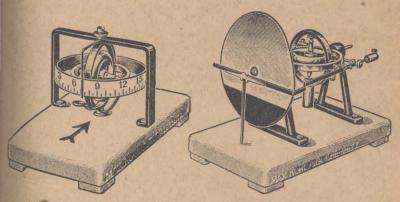


Fig. 234.—Modelo de giróscopo indicador de ruta.

Fig. 235.—Modelo de horizonte giroscópico para avión.

Pero una de las más útiles aplicaciones a la navegación corresponde al giro-compás, constituído por un giróscopo sos-

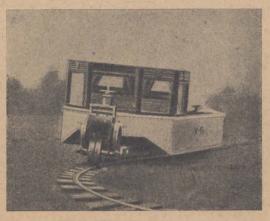


Fig. 236.—Monorriel, cuyo equilibrio se mantiene con un giróscopo.

tenido sobre flotadores con su eje horizontal, en una caja especial, (fig. 238).

El giróscopo propiamente dicho es el rotor de un motor eléctrico.

Después de marchar un tiempo suficiente, su eje se coloca

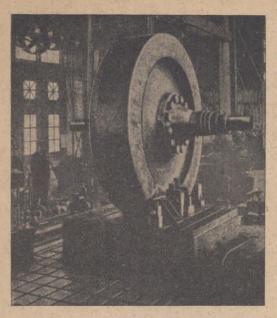


Fig. 237.—Rotor de un giróscopo estabilizador para navios.

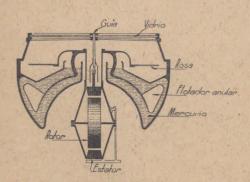


Fig. 238.—Esquema de brújula giroscópica o giro-compás.

en el meridiano geográfico del lugar manteniéndose hori zontal. Toma, por tanto, la dirección de la meridiana geográfica del la gar, marcan do el norte verdadero. No es influenciado por las masas de hierro ni por las variaciones de declinación, como pasa con las brújulas magnéticas : es de uso corriente en los bu ques de guerra.

§ 102.—Péndul de Foucault.

Antes de construir el giróscopo, Foucaulhizo en París, una experiencia famosa, utilizando el péndulo para probar la existencia de la rotación de la Tierra. Usó un péndulo de gran masa y gran longitud que colgó en la cúpula del Panteón, en 1851.

El péndulo tiene la propiedad de conserva invariable la posición de su plano de oscilación cuando es abandonado

a sí mismo. Esta propiedad está vinculada con la conservación

del vector impulso en el giróscopo.

Un péndulo colocado en un polo terrestre (figura 239) al conservar invariable la posición de su plano de oscilación parecerá girar con respecto a su soporte MNPQ ligado al suelle En realidad será éste el que gira acompañando a la tierra

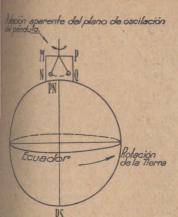
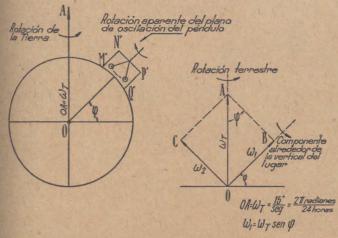


Fig. 239.—Rotación aparente del plano de oscilación de un péndulo en el polo.


Ambas rotaciones tienen sentidos opuestos, como indica la figura.

En esta posición, el plano de oscilación del péndulo tardará un día sideral en dar una vuelta, en su movimiento aparente.

En cambio, en un lugar de latitud φ (figura 240) tardará un tiempo mayor, pues habrá que tener en cuenta la componente de la rotación terrestre en la dirección de la vertical del punto de latitud φ , en vez de su valor total $\omega_T = OA$. El valor de esta componente es, de acuerdo a la figura 240.

$$\omega_1 = OB = \omega_T \operatorname{sen} \varphi$$
 [17]

Pero $\omega_{\rm T}=\frac{2~\pi}{24~{\rm horas}}$ y llamando ${\rm T_1}$ al tiempo de una otación aparente en el lugar de latitud ϕ , se tiene $\omega_1=\frac{2\pi}{{\rm T_1}}$.

'g. 240.—Rotación aparente del plano de oscilación de un péndulo en un lugar de latitud. φ.

Reemplazando en la fórmula [17]:

$$\frac{2 \pi}{T_1} = \frac{2 \pi}{24 \text{ horas}} \text{ sen } \Psi$$

y despejando:

$$T_1 = \frac{24 \text{ horas}}{\text{sen } \phi}$$

En un punto del ecuador terrestre donde $\phi=0$ y, p tanto, sen $\phi=0$ resulta $T=\infty$, es decir, que no da resulta

la experiencia de Foucault.

A continuación indicamos en horas siderales los tiempos len que el plano de oscilación del péndulo daría una vuelta completa para diversas latitudes:

Latitud φ: 90° 60° 45° 34°36′ 30° 0° (Buenos Aires)

Tiempos T₁: 24h 27h42m6 33h56m4 42h15m9 48h o

Fig. 241.—Aparato para comprobar la rotación de la tierra por la rotación del plano de oscilación del péndulo.

Fig. 242.—Experiencia histórica de Foucault.

La figura 241 muestra un dispositivo práctico con el que se verifica la experiencia de Foucault, que actualmente revisi el carácter de experiencia de curso.

La rotación aparente del plano de oscilación se constata por el desplazamiento de un rayo de luz sobre una escala; este rayo es reflejado por un espejito que sigue el movimiento del extremo del péndulo, donde hay un imán que atrae un trozo de Mierro móvil con el espejo.

En la experiencia histórica de Foucault el péndulo maraba su posición sobre un círculo de arena que tocaba su ex-

tremo inferior (figura 242).

§ 103.—Efectos giroscópicos en la tierra.

1.—Precesión.

La tierra girando sobre su eje presenta fenómenos de

inercia como un giróscopo.

Debido a su ensanchamiento ecuatorial y al hecho de que su eje no es perpendicular al plano de la eclíptica, las fuerzas de atracción que el Sol ejerce sobre ella dan lugar a un momento que tiende a cambiar la posición de aquél, originando

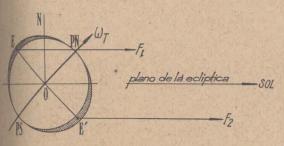


Fig. 243.—Cupla que origina la precesión del eje terrestre.

un movimiento de precesión.

La fig, 243 muestra una sección de la tierra según un meridiano que pasa por el centro del Sol S, cortando el plano de la eclíptica en OS y al ecua-

dor terrestre en EE'. El ángulo de ambos planos es la oblicuidad de la eclíptica y vale 23° 27' aproximadamente.

Las partes rayadas muestran el ensanchamiento ecuatorial; el círculo central corresponde a una esfera con radio igual al semi-eje polar del elipsoide terrestre.

La fuerza F_2 que actúa en la zona rayada de E' es mayor que la F_1 correspondiente a E en virtud de la ley de gravitación (§ 93), por ser menor la distancia de la primera al Sol.

Teniendo en cuenta que la atracción solar de la parte esférica se aplica en O, y que las fuerzas F₁ y F₂ pueden trasladarse a dicho punto agregando dos cuplas de brazo igual a sus distancias a O (§ 32 a), resulta, en definitiva, que la acción del Sol sobre la tierra, además de la atracción aplicada en su centro, comporta u n a c u p l a cuyo momento tiene signo del de la fuerza mayor F_2 respecto a O.

Esta cupla resultante tenderá a desplazar el eje terresti llevándolo a coincidir con la perpendicular ON al plano de l eclíptica.

De acuerdo a las propiedades del giróscopo, la tierra ra accionará moviendo su eje perpendicularmente al plano del de bujo y hacia adelante, para llevarlo hacia el eje de la rotació que la cupla tiende a producir.

Esta acción continuada da lugar a que el eje OP describ

un movimiento cónico alrededor de la recta ON.

Este movimiento de precesión consiste, como hemos visto (§ 101-3), en una rotación alrededor del eje de OZ con velocidad angular Ω (fig. 230 y 231).

Componiendo con la regla del paralelogramo las dos retaciones ω_T y Ω se puede determinar, para cada instante, el velor y la posición del vector ω_R resultante.

Este vector cambia de posición constantemente, pero con

Fig. 244.-Movimiento en precesión de la tierra.

serva invariable s ángulo con OZ.

En la figura 24 están representa dos los vectores y Ω en OA y 01 con los sentidos que les correspondente el caso de la terra.

Al cambiar e plano del vector OA por la precesión, siempre con serva invariable sángulo a con 00 y otro tanto le para al vector resultante OC. Las para el propositiones de la precesaria de la p

siciones de éste quedarán sobre una superficie cónica COC ángulo $ZOC = \theta$.

El eje terrestre formará en cada instante el ángul $COA = \theta - \alpha$ con el eje instantáneo OC. Sus posiciones se cesivas pueden encontrarse imaginando un pequeño cono a ángulo $(\theta - \alpha)$ rodando interiormente apoyado en el COC.

El eje OA de este pequeño cono (eje de la tierra) de cribe la superficie cónica AOA' en el movimiento de precesión regular.

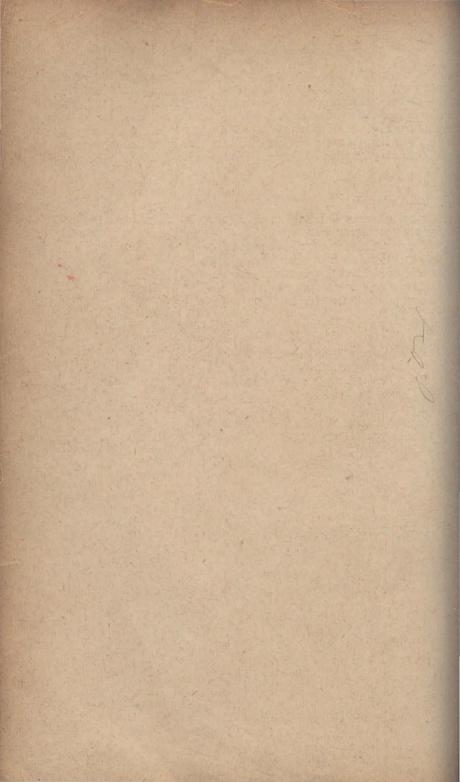
La recta, intersección del ecuador con la eclíptica, llama

da línea de los equinoccios, cambia de posición constantemente. Los equinoccios o puntos de intersección de esa línea con la esfera celeste se mueven en el sentido llamado retrógrado, recorriendo en cada año 50",53 de arco de ecuador. Esta es la llamada precesión o retrograda a ción de los equinoccios, descubierta por Hiparco hace más de 2000 años y explicada ahora en base a los fenómenos giroscópicos.

2.—Nutación.

Como, además del Sol, actúan sobre la tierra otros cuerpos, y en particular la Luna, la cupla que tiende a mover el

eje sufre variaciones periódicas que hacen que en realidad éste no describa una superficie cónica, sino que sufra desplazamientos alrededor de su posición media sobre el cono de precesión, con pe-


ríodo 18 $\frac{2}{3}$ año.

Estos desplazamientos abarcan 14" en la dirección del movimiento cónico de precesión y 18" en dirección perpendicular. La figura 245 indica la línea de las posiciones de un punto del eje por efecto de la precesión y la nutación combinador. (Estas recisiones supular sobre la la contra cont

Fig. 245.—Nutación del eje terrestre.

das. (Estas posiciones quedan sobre la superficie esférica de centro O y radio OA).

CAPÍTULO IX

HIDROSTÁTICA

§ 104. **Definición de flúido.** — En general, dividimos los cuerpos de la naturaleza en sólidos y flúidos. Como no siempre es posible una clasificación estricta, pues hay cuerpos cuya inclusión en uno u otro grupo es dudosa, nos limitaremos ahora a considerar los *flúidos ideales*.

Flúidos son los líquidos y los gases. Ambos se caracterizan por carecer de forma propia, y por lo tanto, adoptar la del reci-

piente que los contiene.

Pero, los líquidos tienen *volumen* definido, mientras que los gases ocupan integramente el volumen del recipiente en que están colocados.

Tanto los líquidos como los gases ideales se caracterizan por la ausencia de resistencias al deslizamiento de unas partes

con respecto a las otras.

Definiremos, pues como flúido ideal, al que no requiere fuerzas para todos aquellos cambios de forma que no modifiquen su volumen.

Para el líquido ideal podemos agregar la condición de que

sea absolutamente incompresible.

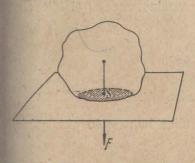


Fig. 246.—Presión es la fuerza por unidad de superficie.

Los flúidos reales requieren la aplicación de fuerzas para producir cambios de forma, o sea deslizamientos de unas partes sobre otras, pero para velocidades muy pequeñas, cumplen con suficiente aproximación las condiciones establecidas para los líquidos ideales.

§ 105.—Fuerza y presión. — Hemos estudiado ya muchos casos en que unos cuerpos ejercen acciones sobre otros. En al-

gunos de ellos esa acción consiste en una fuerza que actúa sobre una superficie. Por ejemplo, en la figura 246, la fuerza F que ejerce el cuerpo, actúa sobre la superficie S de apoyo, en la que suponemos que está uniformemente distribuída.

Se llama presión a la fuerza que actúa por unidad de superficie.

$$p = \frac{F}{S}$$
 [1]

Distinguiremos muy cuidadosamente el empleo de estos dos términos que corresponden a conceptos bien distintos: la fuerza actúa sobre cualquier superficie, la presión es siempre la fuerza por unidad de superficie.

Así por ejemplo: si una fuerza de 8 Kgr actúa uniformemente distribuída sobre una superficie de 20 cm², la presión es

$$p = \frac{8 \text{ Kgr}}{20 \text{ cm}^2} = 0.4 \frac{\text{Kgr}}{\text{cm}^2}$$

Si se dan la presión y la superficie se calculará la fuerza total por la fórmula

$$F = p.s$$

§ 106.—Unidades de presión. — En el sistema métrico o técnico en que la unidad de fuerza es el kilogramo y la de superficie el metro cuadrado, la unidad de presión es:

$$[p] = \frac{Kgr}{m^2}$$

Se usa en la práctica, muy corrientemente, el kilogramo por centímetro cuadrado:

$$[p] = \frac{Kgr}{cm^2}$$

y en las aplicaciones técnicas la atmósfera, igual a 1,033 Kgr cuyo valor justificaremos al estudiar la presión atmosférica

En el sistema c. g. s., la unidad es:

$$[p] = \frac{\text{dina}}{\text{cm}^2}$$

Esta unidad s denomina baria.

En unidades inglesas se utiliza la libra por pulgada cuadrada, cuya equivalencia es:

$$1 \frac{\text{libra}}{\text{pulg}^2} = 0.0675 \frac{\text{Kgr}}{\text{cm}^2}$$
 [7]

La Oficina Meteorológica Británica llama "bar," a la unidad de presión igual a un millón de $\frac{\text{dina}}{\text{cm}^2}$ o Megabaria.

§ 107.—Presión en un punto de una masa líquida. — Consideremos un recipiente (fig. 247) conteniendo una cierta cantidad de líquido en equilibrio. Por lo que hemos dicho al definir los flúidos, ese líquido se podrá derramar con extrema facilidad. Imaginemos una superficie de separación AB entre dos porciones de la masa líquida. Como el conjunto está sometido a la acción de la gravedad, si suprimiéramos la porción I, sería necesario aplicar sobre la superficie AB fuerzas que reemplazaran a las que esa porción ejerce sobre la superficie de separación, para que no se altere el equilibrio de la porción II, y preferencemento que se superficiente de la porción II. de

reciprocamente, suprimiendo la porción II debemos reemplazar su acción sobre AB por fuerzas que mantengan en equilibrio la por-

ción restante.

Ahora bien, para que no haya deslizamiento de las partículas líquidas, esas fuerzas deben ser normales a la superficie de separación AB. Una fuerza oblicua daría una componente paralela a dicha superficie, cuvo

Fig. 247.—Presiones en un liquido.

efecto sería un desplazamiento del líquido. A cada punto corresponderá un valor bien determinado de la presión y, cualquiera que sea la orientación del respectivo elemento de la superficie considerada, siempre actuará sobre él una presión normal. Se dem u estra y la experiencia comprueba que en cada punto la presión es la misma para todas las orientaciones posibles del elemento de superficie.

Llamaremos pues presión en un punto de una masa líquida, a la fuerza que actúe por unidad de área, normalmente a un elemento cualquiera de superficie colocado en ese punto, y suficientemente pequeño como para que se pueda considerar uniforme la presión en toda su extensión.

Del mismo modo, si quisiéramos retirar un elemento de la superficie de la vasija en que el líquido está contenido, tal como el D, para que no se derrame debemos aplicar de afuera hacia adentro una fuerza igual y contraria a la que el líquido ejerce sobre la pared normalmente a su superficie. La hidrostática s propone calcular la distribución de las presiones en el seno d la masa líquida en equilibrio y sobre las paredes del recipiente

§ 108.—Teorema general de la hidrostática. — 1) En general podemos decir que las presiones en los distintos punto del líquido en equilibrio varían con sus posiciones dentro de la masa líquida.

El teorema general de la hidrostática da la ley de varia

ción y se enuncia así:

La diferencia de presión entre do puntos de una masa líquida en equili brio, es igual al producto del pes

 $p_{B} - p_{A} = h. \rho$ Fig. 248.

específico del líquido por l diferencia de nivel entr los mismos.

De acuerdo con este enunciado, dados do puntos A y B cuya diferencia de nivel es en un flúido de peso específico ρ ; si llama mos P_A y P_B a las respectivas presiones, s tiene (fig. 248).

$$p_B - p_A = h \cdot \rho$$

2) Demostración elemental del teorema.

Consideremos, de acuerdo a la figura 249, dentro de un masa líquida, una porción en forma de cilindro recto de altura de consideremos.

h y sección S. Sean A y B las bases del cilindro y ρ el peso específico del flúido.

Este cilindro líquido idealmente separado del resto, permanece en equilibrio bajo la acción de las fuerzas que sobre él se ejercen perpendicularmente a su superficie.

Para que haya equilibrio las acciones laterales deben ser dos a dos iguales

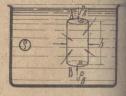


Fig. 249.

y contrarias, en todas las direcciones; pero las verticales no La fuerza ejercida de abajo hacia arriba en la base B, deb superar a la ejercida de arriba hacia abajo en la base A, y la diferencia de ambas debe ser igual al peso del cilindro de líqui do. De otro modo, éste no quedaría en reposo. Debe, por tanto tenerse:

Fuerza en B menos fuerza en A = peso del cilindro.

O sea, llamando p_B y p_A a las respectivas presiones et A y en B:

fuerza en
$$B = p_B \times S$$

"
"
 $A = p_A \times S$

Peso del cilindro = Volumen \times peso específico = $\mathbb{S} \times \mathbf{h} \times \mathbf{g}$ y, por tanto:

$$pB \cdot S - pA \cdot S = S \times h \times p$$
 enadamente por S :

y dividiendo ordenadamente por S:

$$p_B - p_A = h \cdot \rho$$

En la aplicación de esta fórmula se supone que el peso específico es constante en toda la masa líquida, independientemente de la presión. Esto concuerda con la propiedad atribuída al líquido perfecto de ser incompresible.

Los líquidos reales son, en efecto, muy poco compresibles; el agua disminuye en 0,0005 de su volumen inicial por cada

de aumento de presión, que, como veremos en las aplicaciones, corresponde a una diferencia de nivel de 10 metros.

3) La demostración anterior del teorema general de la hidrostática es sencilla aunque presenta algunos puntos objetables. Más correcto es el razonamiento siguiente, basado en el principio de los trabajos virtuales (§ 68).

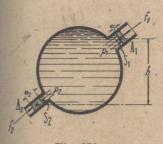


Fig. 250.

Sea un recipiente lleno de líquido y cerrado en A_1 y A_2 con pistones de secciones S_1 y S_2 . Para mantener el equilibrio habrá que aplicar fuerzas f_1 y f_2 tales que:

$$f_1 = p_1 S_1$$
 [9]

$$f_2 = p_2 S_2$$

Imaginemos un desplazamiento virtual, que no dé lugar a variación de volumen, tal como el corrimiento del émbolo A1 hacia afuera en un recorrido e1 y del

émbolo A2 en un recorrido e2 hacia el interior; se tendrá:

$$S_1 e_1 = S_2 e_2 = \omega$$
 [10]

Los trabajos de las fuerzas f1 y f2 serán:

$$L_1 = -f_1 e_1 = -p_1 S_1 e_1$$
 [11]
 $L_2 = f_2 e_2 = p_2 S_2 e_2$

Además en la masa líquida, el único cambio ha consistido en el

pasaje de un volumen ω desde el nivel de A_2 al de A_3 . El trabajo del peso ω ρ ha sido:

$$L_{p} = -\omega \rho h \qquad [12]$$

La suma de los trabajos [11] y [12] es nula en el estado de equilibrio, o sea:

$$- p_1 S_1 e_1 + p_2 S_2 e_2 - \omega \rho h = 0$$
 [13]

y dividiendo por ω , en virtud de la fórmula [10] resulta:

$$p_2 - p_1 = \rho h$$

§ 109.—Superficies de nivel. Superficie libre. — Del teorema general de la hidrostática deducimos que a los puntos de un mismo plano horizontal (h = 0) corresponden iguales presiones. Recíprocamente decimos que puntos de igual presión en una masa líquida homogénea en equilibrio están en un mismo plano horizontal.

Como todos los puntos de la superficie libre están a la misma presión exterior (la de la atmósfera si el recipiente es abierto), se deduce que dicha superficie es un plano horizontal, estando el líquido en reposo.

§ 110.—Presiones sobre el fondo y las paredes de los vasos.

—1) Las presiones ejercidas por un líquido en equilibrio, sobre

B PS C A

Fig. 251.—Presiones en las paredes de un recipiente.

el fondo y las paredes laterales del vaso en que está contenido, tienen dirección normal a la superficie en que se aplican.

Un razonamiento análogo al hecho para una superficie interna (§ 107), le comprueba.

El valor de la presión ejercida en cada punto, puede calcularse mediante la aplicación del teorema general de la hidrostática.

Sea un líquido de peso específico a situado en el recipiente de la figura 251.

Suponiendo nula la presión en la superficie del líquido (caso de tener el vaso

en el vacío), se tiene, aplicando el teorema general de la hidrostática:

Presión en el fondo:

Presión en los puntos B y C (igual nivel):

$$p_B = p_C = h' \cdot \rho \qquad [15]$$

En realidad, sobre la superficie del líquido actúa la presión atmosférica p_o, teniéndose la relación

$$p_A - p_o = h \cdot \rho$$

Pero, como también actúa sobre el vaso y por la parte exterior, la presión atmosférica, con valor prácticamente igual a p_{o} , el producto h. ρ representa la fuerza resultante aplicada en cada cm² del fondo del vaso y a la que debe resistir éste.

Análoga cosa puede decirse de los valores de las presiones

en B y C.

2) Paradoja hidrostática.—La presión sobre el fondo depende sólo del peso específico y de la altura de líquido h. Si el fondo tiene sección S, el empuje producido (fuerza total), será:

$$F = p \cdot S = h \cdot \rho \cdot S$$
 [16]

y también, para un valor dado S sólo dependerá de h y de ρ, siendo independiente de la forma del vaso y de la cantidad de líquido contenido en él.

Esto se comprueba con el aparato de la figura 252, en que

se mide la fuerza total, ejercida sobre una misma superficie de fondo por el líquido contenido en vasos de distinta forma.

El hecho paradójico consiste en que los valores obtenidos para la fuerza son iguales, cualquiera sea la masa total de líquido, con tal que alcance en todos los recipientes el mismo nivel, llegando a ser mayor aún que el peso total del líquido contenido.

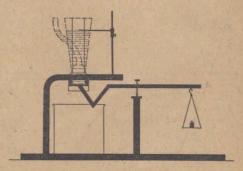


Fig. 252.—Aparato para comprobar que la presión en el fondo sólo depende del nivel del líquido en el recipiente.

§ 111.—Presión de abajo hacia arriba. — En el interior del líquido la presión se ejerce en todos sentidos en cada punto.

Consideremos en un punto un elemento de superficie horizontal. Sobre él se ejercen verticalmente dos presiones, una de arriba hacia abajo y la otra de abajo hacia arriba, ambas



Fig. 253.—Presión de abajo hacia arriba.

son iguales y se equilibran. Para demostrarlo experimentalmente se emplea el dispositivo indicado en la figura 253.

En el interior de un recipiente con agua se introduce un tubo con una tapa liviana MN de vidrio sostenida mediante el hilo AB.

Se comprueba que, una vez introducido el tubo, la tapa MN queda adherida por efecto del empuje originado por la presión de abajo hacia arriba p'.

Para probar que esta presión es igual en valor a la de arriba hacia abajo, o sea que p' = h.p. basta con llenar de agua el tubo.

Al llegar al nivel exterior, la tapa se desprende por acción de su peso, al equilibrarse las presiones que actúan sobre ella

§ 112.—Comprobaciones experimentales. — El aparato de

la figura 252 comprueba, en realidad, que la presión sólo depende de la altura de la columna líquida.

Con los tubos de la fig. 254 tapados en su parte inferior con un disco de vidrio y sumergidos, se observa que,

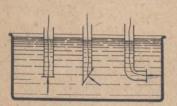


Fig. 254.—La presión en el seno del liquido actúa en todas direcciones.

colocan do el mismo líquido en el interior. el disco se desprende cuando el nivel es igual al del exterior. Esto com-

prueba que

la presión es la misma en todas direcciones.

Con el baróscopo de líquidos (fig. 255) se realiza la misma comprobación.

La membrana elástica M recibe la presión que la deforma, y se desnivela el líquido en el tubo en U de la parte

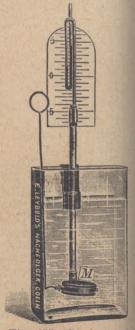


Fig. 255.—Baróscopo de liquidos.

superior. Ese desnivel aumenta con la profundidad de M y es independiente de su orientación.

§ 113.—Vasos comunicantes. — 1) Un sistema de dos o más recipientes comunicados por su parte inferior, constituye un sistema de vasos comunicantes.

En los vasos comunicantes con un solo líquido, éste toma el mismo nivel en todos los vasos.

Este hecho puede verificarse experimentalmente con un aparato como el que indica la fig. 256. En todos los tubos,

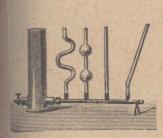


Fig. 256.—Vasos comunicantes.

de distinta forma, el agua o el líquido vertido toma el mismo nivel.

En realidad, los cinco vasos y el tubo de comunicación forman un solo recipiente lleno de líquido.

La superficie debe tener el mismo nivel, porque en ella la presión es la misma (la atmosférica p₀), y todos los puntos que están al mismo nivel tienen igual presión.

Fig. 257.—Nivel de agua.

Como aplicación de los vasos comunicantes mencionaremos el nivel de agua (fig. 257), que se utiliza para tomar visuales horizontales. El funcionamiento de los pozos artesianos se explica también como fenómeno de vasos comunicantes (fig. 258).

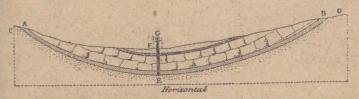


Fig. 258.—Pozo artesiano.

2) Vasos comunicantes con distinto líquido.—Si en un sistema de dos vasos comunicantes se colocan dos líquidos que no se mezclan y de distinta densidad, alcanzan niveles diferentes.

Se establece una superficie de separación MN en el vaso que contiene al líquido menos denso, como indica la fig. 259.

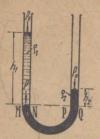


Fig. 259.—Vasos comunicantes con liquidos distintos, no miscibles.

Se puede verificar que las alturas de las columnas líquidas contadas a partir del plano de la superficie MN de separación, son inversamente proporcionales a los pesos específicos ρ_1 y ρ_2 de los líquidos.

Esta propiedad es consecuencia del teore-

ma general de la hidrostática.

En efecto, para que haya equilibrio, las presiones p y p' ejercidas sobre la superficie MN de arriba hacia abajo y de abajo hacia arriba, deben ser iguales.

La presión p, debida al líquido menos denso, se calcula con el teorema de la hidrostática. Siendo p_o la presión atmosférica aplicada en la superficie libre, se tiene:

$$p - p_0 = h_1 \cdot \rho_1$$
 $p = p_0 + h_1 \cdot \rho_1$

y, por tanto:

En cuanto a la presión p' transmitida por el líquido más denso, es igual a la que actúa al mismo nivel en PQ, sobre el otro tubo. De acuerdo con el teorema de la hidrostática, su valor es:

$$p' = p_0 + h_2 \cdot \rho_2$$

Igualando los valores de p y p', resulta:

$$p_0 + h_1 \rho_1 = p_0 + [h_2]^{-} \rho_2$$

o sea, simplificando:

$$h_1 \rho_1 = h_2 \rho_2$$

de donde se deduce:

$$\frac{\mathbf{h}_1}{\mathbf{h}_2} = \frac{\rho_2}{\rho_1}$$

Ejemplo:

Si los líquidos son agua y mercurio se tiene:

$$\frac{h_1}{h_2} = \frac{13,59 \frac{gr}{cm^3}}{1 \frac{gr}{cm^3}}$$

$$h_1 = 13,59 h_2$$

De modo que por cada centímetro de columna de mercurio hay 13,59 m de columna de agua.

§ 114.—Principio de Pascal. — Consideremos un recipiente leno de líquido y cerrado con un émbolo provisto de un pistón de sección s (fig. 260a). El teorema general de la hidrostática

Fig. 260a

nos dice que la diferencia de presión entre dos puntos de la masa líquida sólo depende de su diferencia de nivel. Por lo tanto, si en A ejercemos una fuerza F que produce un aumento de presión $p=\frac{F}{s}$, ese aumento se trasmitirá integramente a todos los puntos de la masa, para que la diferencia de presiones con la de A se mantenga constante. Esta consecuencia del teorema general de la hidrostática se conoce como principio de Pas-

La presión ejercida sobre la superficie libre de un líquido en equilibrio se transmite íntegramente y en todo sentido a todos los puntos de la masa líquida.

cal y se enuncia así:

De esta manera, si p_a y p_c son las presiones en A y C antes de aplicar la fuerza F, después de su aplicación dichas presiones serán:

$$p'A = pA + p$$

 $p'c = pc + p$

Este principio se comprueba con el aparato de la figura 260b. Se observa que al actuar sobre el pistón del tubo vertical,

Fig. 260b.—Aparato para comprobar el principio de Pascal.

el nivel del líquido asciende valores iguales en todos los tubitos laterales.

§ 115.—Prensa hidráulica. — De acuerdo con el principio de Pascal, los líquidos trasmiten integramente, en todas direcciones, las presiones que sobre ellos se ejercen.

Si sobre un líquido encerrado en un recipiente ejercemos una presión p, obtenida mediante la aplicación de una fuerza sobre un émbolo de sección pequeña, s, podemos recoger una fuerza F mucho mayor en otro émbolo de sección grande S (fig. 261).

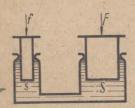


Fig. 261.—Principio de la prensa hidráulica.

Una fuerza f=1 Kgr, aplicada sobre un émbolo de sección s=1 cm puede equilibrar a una fuerza F=10.000 Kgr aplicada sobre otro émbolo de sección S=1 m², porque en ambos émbolos las presiones aplicadas al líquido tienen el mismo valor:

$$p = \frac{f}{s} = \frac{F}{S} = 1 \frac{Kgr}{cm^2}$$

Esta propiedad se aplica en la *prensa hidráulica*, utilizándosela para producir grandes fuerzas de compresión.

Esquemáticamente la prensa hidráulica consta de un sistema de dos recipientes cilíndricos, comunicados por su parte inferior, en los que se mueven los émbolos de secciones s y S (figura 261) en contacto

con el líquido.

Sobre el pequeño émbolo de sección s se aplica la fuerza f.

El émbolo grande necesita para el equilibrio la fuerza

$$F = f : \frac{S}{s} \qquad [18]$$

Esta fuerza es aplicada por la resistencia del cuerpo sometido a la compresión. En la figura 262 se ve una prensa hidráulica con el dispositivo de bombeo para introducir el

Fig. 262.—Prensa hidráulica.

agua necesaria y la palanca para accionarlo.

§ 116.—Trabajo y fuerza. — La prensa hidráulica multi-

plica la fuerza, pero no el trabajo.

El trabajo de la fuerza f, suponiendo despreciables las pérdidas, sería igual al de la fuerza F. En realidad este último es siempre menor que el primero debido a los roces, indispensables para el perfecto ajuste de los émbolos.

En las condiciones ideales a un espacio e recorrido por el pistón chico le corresponde un espacio e' del émbolo grande,

tal que se cumpla la condición:

$$f \times e = F \times e'$$

En efecto, suponiendo que no hay variaciones de volumen del líquido, el pistón grande sube *e'* comprimiendo el cuerpo, mientras el chico recorre un espacio e, tal que:

$$es = e'S$$
 \therefore $e = \frac{S}{S} e'$

y, por lo tanto:

$$e = \frac{F}{f} e' \therefore fe = Fe'$$

Djemplo:

Si s = 1 cm² y S = 200 cm², para un recorrido e' = 1 cm debe te-

nerse: e = 200 cm = 2 m.

Este recorrido se integra por varios movimientos de descenso del pequeño émbolo, combinando un dispositivo de válvulas para el bombeo del agua necesaria para ir llenando el cilindro grande. Una palanca facilita la acción, permitiendo una multiplicación de la fuerza ejecutada (figuras 262 y 263).

Cálculo de la fuerza aplicada a la palanca. — Para tener una fuerza F dada debe actuar en el embolo pequeño (fig. 263) la fuerza:

$$f = F \cdot \frac{s}{S}$$

y en el extremo de la palanca hay que aplicar la fuerza X tal que:

$$X \cdot a = f \cdot b$$

y por lo tanto:

$$X = f \cdot \frac{b}{a}$$

o sea:

$$X = \frac{s b}{S a} F$$
 [19]

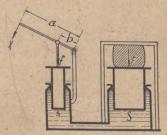


Fig. 263.—Esquema de prensa hidráulica.

§ 117. Principio de Arquímedes. — Arquímedes, observando la pérdida aparente de peso que experimentan los cuerpos sumergidos en un líquido, estableció la ley que se conoce con el nombre de principio de Arquímedes y cuyo enunciado es el siguiente:

Todo cuerpo sumergido en un líquido recibe un empuje de abajo hacia arriba igual al peso del líquido que desaloja.

Así, por ejemplo, si sumergimos en agua un cuerpo cuyo volumen es V = 80 cm³, recibirá un empuje igual al peso de

80 cm³ de agua, o sea de 80 gramos fuerza.

El mismo cuerpo sumergido en mercurio, cuyo peso específico es 13,59 $\frac{gr}{cm^3}$ recibirá un empuje igual al peso de 80

cm³ de mercurio, o sea de:

$$80\,\mathrm{cm^3} imes 13,59\,\frac{\mathrm{gr}}{\mathrm{cm^3}} = 1088~\mathrm{gr} = 1,088~\mathrm{Kgr}$$

Si el cuerpo se sumerge parcialmente, el empuje que recibe es igual al peso del volumen de líquido desalojado o desplazado por la parte sumergida.

§ 118. Demostración del principio de Arquímedes. – Puede demostrarse el principio de Arquímedes como consecuencia de las condiciones de equilibrio interno establecidas para los líquidos.

Fig. 264.—Empuje en un cuerpo sumergido.

Sobre el cuerpo sumergido C actúan la fuerzas f, normales a su superficie, debidas a la presión hidrostática del líquido. La resutante de todas esas fuerzas es el empuje de Arquímedes (fig. 264).

Para calcular su valor imaginemos reemplazado el cuerpo por igual volumen de líquido; tendremos así una masa homogénea el equilibrio.

La distribución de presiones en la superficie que limitaba el cuerpo no se ha modifica-

do, y su resultante total (empuje) ha sido equilibrada por le peso de esa porción líquida, luego deben ser iguales.

El empuje estará aplicado en el centro de gravedad de

masa líquida desalojada, llamado centro de empuje.

experimentalmente la existencia de dicho empuje mediante la

alanza hidrostática y el doble cilindro de Arquímedes.

La balanza hidrostática es un modelo de balanza dotada le platillos cortos, que llevan en su parte inferior unos gannitos de los que pueden colgarse los cuerpos que se sumergen en líquidos, a fin de valorar los empujes que reciben.

De uno de los platillos y en la forma indicada en la figura 35a se cuelgan los dos cilindros P y C, y se equilibra car-

gando el otro platillo con una tara T.

El P es macizo y el C hueco, siendo la capacidad de C exacta-

mente igual al volumen de P.

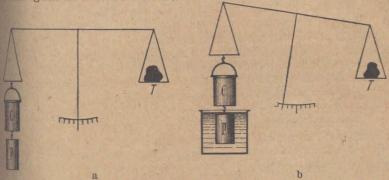


Fig. 265.—Comprobación del principio de Arquimedes.

Sumergiendo en agua el cilindro P se rompe el equilibrio, causa del empuje recibido, que se trasmite al platillo de la malanza (figura 265 b).

Para probar que el empuje es igual al peso del volumen de agua desalojado, se llena de este líquido el cilindro C y se com-

prueba que se restablece el equilibrio de la balanza.

El empuje era, pues, igual al peso del volumen de líquido desalojado por el cilindro P, volumen que, colocado en C, restablece el equilibrio por efecto de su peso.

§ 120.—Otra verificación experimental. — No disponién-

dose del doble cilindro, puede efectuarse la verificación con el dispositivo siguiente (fig. 266):

Se cuelga de la balanza in cuerpo cualquiera C', colocando un vasito B sobre el

mismo platillo.

En seguida se equilibra con

una tara T.

Introduciendo el cuerpo C en el agua contenida en el re-

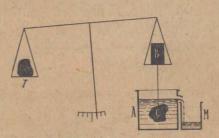


Fig. 266.—Comprobación del principio de Arquimedes.

cipiente A, dotado de un pico lleno hasta el nivel del desborde, se observarán dos cosas:

- a) La balanza se desequilibra por el empuje de abajo hacia arriba recibido por el cuerpo.
- b) Por el pico desborda el agua cayendo al recipiente M un volumen igual al del cuerpo C.

Para restablecer el equilibrio bastará echar en el recipiento B el agua recogida en M.

Esto comprueba el principio de Arquímedes.

§ 121.—Fuerza que actúa sobre el líquido. — En virtudel principio de acción y reacción, podemos decir que al recibir el cuerpo sumergido en el flúido el empuje de abajo hacia arriba, ejerce sobre este último una reacción igual y contraria.

Es decir, que el cuerpo sum ergido produce en el flúido un empuje dirigido de arriba hacia abajo igual al peso del volumen de aquel que desaloja.

Se lo verifica experimentalmente con el dispositivo indicado en la figura 267.

En una balanza de Roberval se coloca un recipiente R, con agua, sobre un platillo y otro menor R', vacío, en el otro, equilibrando con ayuda de una tara.

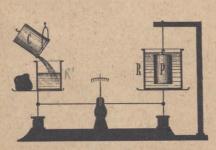


Fig. 267.—Acción y reacción entre líquido y cuerpo sumergido.

El cilindro macizo p se lo cuelga de un soporte adecuado, y luego se lo introduce en el líquido del recipiente R. El equilibrio se rompe de inmediato, acusando un empuje dirigido de arriba hacia abajo en R. Para probaque es igual al peso del liquido desalojado, basta con llenar de agua el cilindro hueco C y verter su contenido en el recipiente R', comprobando que el equilibrio se restablece.

§ 122.—Cuerpos flotantes.

1.—Flotabilidad.

Sumergido un cuerpo en un líquido, puede ocurrir que empuje sea menor, igual o mayor que su peso.

En el primer caso, si el empuje es menor que el peso, el mero se sumerge hasta llegar al fondo.

Si el empuje es igual al peso, flota en el seno de la masa limida, es decir, queda en equilibrio en cualquier posición.

Si el empuje es mayor que el peso, el cuerpo flota en la superficie. En este caso emergerá parte del cuerpo, hasta que el empuje de la parte sumergida equilibre al peso.

Es fácil encontrar ejemplos: una esfera maciza de hierro colocada en agua se sumerge y en mercurio flota en la superficie. Una gota de aceite flota en el seno de una mezcla adecuada de alcohol y agua (figura 268).

Fig. 269.-Ludión.

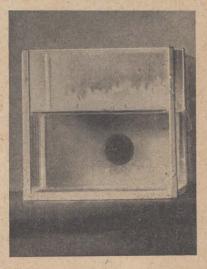


Fig. 268.—Esfera de aceite flotando en el seno de una mezcla de alcohol y agua.

La condición de flotabilidad es, pues:

E = P

2.—El ludión y el submarino.

Es curioso y fácil de explicar el funcionamiento del *ludión*, cuerpo hueco colocado en un líquido en el cual se puede hacer ascender o descender a voluntad.

Está construído de vidrio y presenta un pequeño orificio en su parte inferior. Parcialmente lleno de agua, flota en el líquido en condiciones normales con un exceso muy pequeño del empuje sobre el peso. Al ejercer una presión sobre la parte superior del líquido, se trasmite a todo el recipiente y en particular al interior del flotador, aumentando la cantidad de agua que contiene, (se comprime el aire sobrante) y por lo tanto su peso excede al empuje y el ludión desciende. Regulan-

Fig. 270.—Submarino argentino "Santa Fe".

do la presión con la mano se lo mueve como se desea.

El problema de los submarinos se resuelve en forma análoga: de jando penetrar agua pa ra aumentar su peso se facilita la inmersión que en parte tambien as producida por timones adecuados. La mayor de ficultad se presenta cuando se desea que e submarino navegue a pre fundidad constante, pue una vez sumergido, tien de a ir al fondo.

§ 123.—Equilibrio de cuerpos flotantes.

El cuerpo flotante estará en equilibrio cuando los centros de gravedad y empuje se encuentren sobre una misma vertical

En la figura 271a se ha representado un prisma homogeneo flotando en equilibrio en la superficie; el centro de en puje C y el de gravedad G están en una misma vertical.

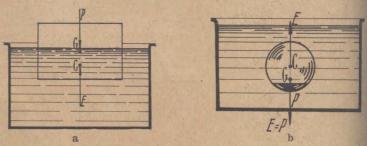


Fig. 271.—Equilibrio de cuerpos flotantes.

En la figura 271b una esfera inhomogénea flota en el seno del líquido; el centro de empuje C coincide con el centro de figura y en la posición en equilibrio se encuentra en la vertical del centro de gravedad G.

§ 124.—Estabilidad - Metacentro.

Si el cuerpo flota en el seno del líquido, el equilibrio será estable cuando el centro de gravedad está debajo del centro de empuje (fig. 271b). Es el caso de un submarino navegado bajo la superficie. Cuando el cuerpo sumergido es homo géneo ,ambos centros coinciden y el equilibrio es indiferente tal es el caso de la gota de aceite en la figura 268.

Cuando el cuerpo flota en la superficie, la condición de estabilidad no puede establecerse en forma sencilla, siendo po-

Fig. 272.—Estabilidad: metacentro.

sible el equilibrio estable aunque el centro de gravedad esté más alto que el centro de empuje. Para ello será necesario que, en todo pequeño desplazamiento del cuerpo alrededor de su posición de equilibrio, el peso y el empuje originen una cupla que lo lleve nuevamente a esta posición (figura 272).

En los cuerpos que presentan un plano de simetría longitudinal, como las embarcaciones (fig. 273) o el prisma de la figura 272, se llama metacentro (M) a l punto de intersección del plano

de simetría con la vertical que pasa por el centro de empuje C' del cuerpo desviado.

Cuando el metacentro está más alto que el centro de gravedad, el equilibrio es estable, (figuras 272 y 273).

En el caso general de un cuerpo cualquiera, se demuestra que el equilibrio es estable cuando la altura del centro de gravedad con respecto al mínima.

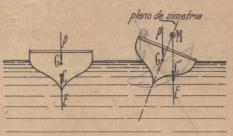


Fig. 273.—Metacentro en una embarcación.

centro de empuje, es

§ 125. —Determinación de pesos específicos y densidades.

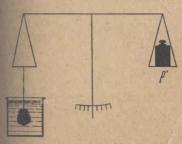


Fig. 274.—Determinación de denidades con la balanza hidrostática.

1.—Método de la balanza hidrostática.

El principio de Arquímedes proporciona un método cómodo para la determinación de pesos específicos y densidades.

Con la balanza hidrostática (fig. 274) se determina primero el peso del cuerpo en el aire, y luego, se lo pesa sumergido. La diferencia de ambos (p—p')

da el valor del empuje, o sea el peso del líquido desalojad El cociente:

$$D = \frac{p}{E} = \frac{p}{p - p'}$$

es la densidad relativa o peso específico relativo del cuer con respecto al líquido.

Si ρ' es el peso específico del líquido, se tiene, como val del peso específico del sólido:

$$\rho = \frac{\mathbf{p}}{\mathbf{p} - \mathbf{p'}} \rho'$$

Multiplicando, en cambio, D por la densidad 8' del líqui se tiene la densidad del sólido,

$$\delta = \frac{p}{p - p} \delta'$$

Si se desea obtener la densidad de un líquido, se pesa cuerpo cualquiera, primero, sumergido en el líquido cuya de sidad se busca, y luego, en el líquido de densidad conocid Siendo p el peso del cuerpo en el aire, p' en el líquido de de sidad conocida, y p'' en el líquido de densidad buscada, la de sidad relativa:

$$D = \frac{p - p^{19}}{p - p^{7}}$$

es el cociente de los pesos de iguales volúmenes de ambos líquidos (empujes que recibe un mismo cuerpo).

Conociendo la densidad δ' y el peso específico ρ' de un de ellos, se calculan los del otro líquido:

$$\delta'' = \frac{p - p''}{p - p'} \delta'$$

$$\rho" = \frac{\mathbf{p} - \mathbf{p}}{\mathbf{p} - \mathbf{p}} \rho'$$

En todas estas experiencias será necesario elegir un sol do que no flote, es decir, de mayor densidad que los líquido utilizados y que no sea alterado por ellos.

2.—Método del dinamómetro.—Para determinaciones repidas se puede emplear un simple dinamómetro, que da dire

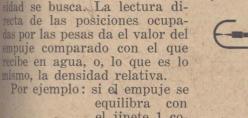


Fig. 275.—Determinaión de densidades con dinamómetro.

tamente los pesos p y p' del cuerpo en el aire y sumergido. Se aplican las mismas fórmulas.

3.—Balanza de Mohr.—Se utiliza para densidades de líquidos con respecto al agua.

Trae un buzo que se sumerge en los distintos líquidos y un juego de pesas especiales tales, que la que corresponde a la unidad equilibra el empuje que recibe el buzo sumergido en agua destilada a 15° C de temperatura. Las restantes son 1/10 y 1/100 de la anterior. Corriendo las pesas sobre el brazo dividido en diez partes iguales, se llega a equilibrar el empuje que recibe el buzo en el líquido cuya den-

equilibra con el jinete 1 colocado en la división 8, significa que su valor es 8 déci-

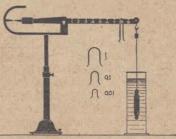


Fig. 276.—Balanza de Mohr.

mas del empuje que el buzo recibe en el agua, es decir, la densidad del líquido es 0.8 veces la del agua (D = 0.8).

§ 126.—Densímetros y areómetros.—Son flotadores de vidrio convenientemente lastrados (fig. 277); el volumen de la parte sumergida se modifica de acuerdo con el peso específico del líquido en que se los coloca. Una escala en el tubo vertical da directamente ese peso específico, por lectura al nivel libre del líquido. Para casos especiales se construyen densímetros con escala arbitraria (pesa leche, pesa alcoholes, etc.).

Se suelen utilizar los llamados areómetros de Beaumé, cuya escala es diferente según que se trate de líquidos más o menos densos que el agua, y se ha establecido en base a las densidades de soluciones de sal común en agua.

Fig. 277.— Densimetro.

Las relaciones entre los grados Beaumé y las densidades correspondientes son las siguientes:

a) Líquidos más densos que el agua:

$$\delta = \frac{144,3}{144,3-n}$$
 . [26]

b) Líquidos menos densos que el agua:

$$\delta = \frac{118}{118 + n}$$

siendo n el número de grados Beaumé.

Así por ejemplo, el ácido sulfúrico del comercio corresponden n = 6 grados Beaumé, lo que equivale a una densidad:

$$\delta = \frac{144,3}{144.3 - 66} = 1,85$$

§ 127.—Método del picnómetro o frasco.—El picnómetro es un frasc de volumen fijo (fig. 278).

1.—Densidad de sólidos.

Se lo llena de agua hasta el enrase y se determina su peso; lug se pesa el cuerpo cuya densidad se busca y, finalmente, se pesa el fras con el cuerpo en su interior y lleno de agua hasta el enrase.

Si llamamos:

Picnómetro.

P = peso del frasco con agua

p = peso del cuerpo

p' = peso del frasco con el cuerpo en su interior

La diferencia

$$p_1 = (P + p) - p'$$

da el peso del líquido desalojado. La densidad relativa sería:

$$D = \frac{p}{p_1} = \frac{p}{P + p - p'}$$

y la densidad absoluta:

$$\delta = \frac{p}{P + p - p'} \delta'$$

Mg. 279.—Curioso grabado publicado en 1547 de acuerdo con la leyenda que atribuye a Arquimedes el descubrimiento de la ley que lleva su nombre mientras se bañaba.

2.—Densidad de líquidos.

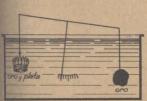


Fig. 280.—Sobre cada platillo de la balanza actúa una fuerva igual a la diferencia entre el peso y el empuje. Si los cuerpos son de distinta densidad, el equilibrio depende del medio en que se coloca.

El mismo frasco, llenado con otro líquido de densidad 8" tendrá un peso P".

Si es Po el peso del frasco vacío, la densidad relativa del líquido es:

$$D = \frac{P'' - P_0}{P - P_0}$$
 [30]

y la densidad absoluta:

$$\delta'' = \frac{P'' - P_0}{P - P_0} \delta$$
 [31]

Nota.-Históricamente se atribuye a Arquimedes (250 años a. C.) el descubrimiento del principio que lleva su nombre, preocupado por el deseo de resolver el problema de decidir si una corona que debía ser de oro, no había sido construída con otros metales menos nobles. La determinación del peso específico pesándola en el aire, y sumergida le permitió re-solverlo sin destruir la corona.

Equilibrando en aire una balanza con dos cuerpos de distinta den sidad, el equilibrio no subsiste al sumergir el conjunto en agua.

El cuerpo menos denso recibe mayor empuje; tal sucede con la corona

de la fig. 280.

§ 128.—Tensión superficial.

El teorema general de la hidrostática no es válido cuando se tienen porciones muy pequeñas de líquido, la superficie libre no es un plano horizontal en las proximidades de las paredes del recipiente, ni en el interior de tubos de pequeño dia metro.

Estos hechos se explican admitiendo la existencia de la

tensión superficial.

Observamos que la superficie libre de los líquidos se com-

porta en cierto modo como una membrana elástica sometida a tensiones. Así, por

Fig. 281.—La superficie libre del liquido se comporta como una membrana elástica.

ejemplo, si en una cubeta con mercurio colocamos licopodio sobre la superficie y tomando una varilla de vidrio la introducimos en la masa líquida, al retirarla observaremos el licopodio adherido sobre la varilla en toda su extensión, como si la superficie libre del líquido fuera una membrana elástica que se estira sin romperse al introducir la varilla.

Una gota líquida que se forme en el extremo de un tubo por el cual fluve lentamente, adquiere las formas de una membrana elástica que se fuera llenando de líquido (fig. 282). Una got

sobre un vidrio se comporta como un pequeño saguito elástico (fig. 283).

Si en un pequeño marquito de

Fig. 283.—Formas de gotas.

alambre con uno de sus lados deslizable AB (fig. 284) formamos una lámina líquida (pompa de jabón), observaremos que, a menos que apliquemos una fuerza F para evitarlo, dicho lado será arrastrado hacia la parte superior. Además, podremos verificar que la fuerza F es independiente de la extensión de la membrana.

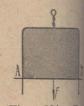


Fig. 284.—Ten superficu en membranas in bonosas.

Fig. 282.-Forme ción de una goto.

En las membranas elásticas se llama tensión en un punto A, a la fuerza que debemos aplicar por unidad de longitud

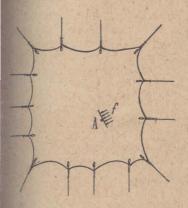


Fig. 285.—Tensión en una membrana elástica.

para que no se deforme en un corte perpendicular en A a la dirección que se considera (fig. 285). Se medirá, por tanto, en

Diremos, resumiendo: la superficie libre de los líquidos o la superficie de separación de dos líquidos se comporta como una membrana elástica cuya tensión f, que llamaremos tensión superficial, es la misma en todos sentidos. A igualdad de todas las demás condiciones, sólo depende de la naturaleza

del líquido y es independiente de la extensión de la superficie. Es por esta tensión que los pequeños insectos caminan sobre el agua, y ella nos permite hacer flotar en agua una aguja de acero apoyada suavemente.

§ 129.—Explicación de la tensión superficial. Experiencias.

1.—Estos fenómenos se explican por las acciones entre las moléculas líquidas. Cada molécula, en el seno del líquido, está sometida a las acciones de las que la rodean, y se encuen-

ran comprendidas dentro de cierta esfera de radio r que llamaremos ra-dio de acción (1).

Todas esas acciones se equilibran en la molécula M (fig. 286).

En aquellas moléculas cuya distancia a la superficie es menor que dicho radio, las acciones de las restantes no se equilibran sino que dan una resultante dirigida hacia el in-

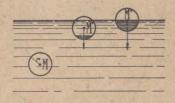


Fig. 286.

terior del líquido, cuyo valor es máximo para las moléculas superficiales, como la M" de la fig. 286. El líquido se encuentra, pues, sometido a la acción de una presión hacia el interior, y cada molécula superficial sometida a la acción de las moléculas que la rodean en la superficie (tensión superficial).

⁽¹⁾ Se calcula que ese radio es inferior a 0,1 µ

Lo característico de la tensión superficial es que en el líquido la tensión no varía al aumentar la extensión de la superficie, contrariamente a lo que ocurre con las membranas elásticas sólidas, en que la tensión crece con el alargamiento.

Las mediciones experimentales dan para el agua a 20 un valor de la tensión superficial de 80 dinas/cm. De acuerdo con esto, la teoría permite calcular para la presión hacia el

interior del líquido un valor aproximado de 10.000 $\frac{\text{kgr}}{\text{cm}^2}$, pero no hay experiencia que permita comprobarlo.

2.—Para la observación de fenómenos debidos a la ten-

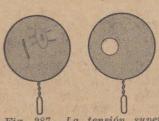


Fig. 287.—La tensión superficial es uniforme en toda la membrana líquida.

sión superficial es cómodo formar láminas líquidas, utilizando agua de jabón con un poco de glicerina.

Sumergiendo un aro de alambre en ese líquido, al retirarlo se habrá formado una lámina líquida Una experiencia simple consiste en colocar sobre esa lámina un pequeño lacito de hilo de coser; rompiéndola en el interior del lazo, para la cual basta tocarla con la punta de un lapiz, se observa que se contrae hasta que aquél adopta la forma

circular. Ello comprueba que existe una tensión uniforme r normal al borde del hilo (fig. 287).

§ 130.—Tensión y energía superficial.—La existencia de la tensión superficial nos indica que los líquidos poseen ener-

Fig. 288.—Las membranas líquidas toman la forma de minima superficie

gía de superficie. Todo cambio de forma que signifique wa variación del área de su superficie, requiere trabajo. Si a aumenta la superficie es necesario un trabajo exterior que

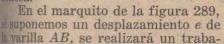
BLAS PASCAL (1623-1662)

Gran matemático, físico y filósofo francés.

Sus obras "Relato de la gran experiencia del equilibrio de los líquidos" (Paris 1648) y "Tratado del peso de la masa del aire" (escrito en 1654 y publicado en 1663), contienen sus principales descubrimientos en el campo de la fisica.

A él se debe la ley fundamental de la trasmisión de presiones, conocida como "principio de Pascal", la determinación experimental de la variación de la presión atmosférica con la altura y el invento del barómetro de sifón.

Espíritu selecto, fué un niño prodigio, que a los 12 años redactó por


intuición, los principales postulados de Euclides.

Después de brillar en la ciencia, siguió una linea mistica y filosófica buscando la perfección espiritual.

BIBLIOTECA MACIONAL

meda en el líquido en forma de energía potencial superficial. En general, el líquido tendrá tendencia a adoptar la forma del

silido de menor superficie, o sea de energía potencial mínima. Ello explica porqué la gota de aceite de la figura 268 es esférica, y explica también las formas que adoptan las láminas líquidas de la figura 288 que pueden obtenerse fácilmente con marquitos de alambre y solución jabonosa.

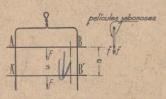


Fig. 289.—Tensión superficial y energía potencial de superficie.

pigual al producto de la fuerza total F por el camino e. Llamando f a la tensión superficial, tenemos:

$$F = 2 f \cdot AB$$

(pues la lámina está limitada por dos superficies)

$$L = F \times e = 2 f \times AB \times e$$

de donde resulta

$$f = \frac{L}{2 \text{ AB} \times e} = \frac{L}{2 \text{ 3}}$$
 [32]

Y llamando S al aumento total de la superficie de la lámina $(8 = 2 \text{ s} = 2 \text{ AB} \times \text{e})$, se tiene:

$$f = \frac{L}{S}$$
 [33]

resulta así la tensión superficial igual al trabajo necesario para a umentar la extensión de la superficie en un centímetro cuadrado. Representa, entonces, una energía potencial de superficie.

§ 131.—Capilaridad.

1.—Hemos dicho que la superficie libre de los líquidos no es un plano horizontal en las proximidades de las paredes de los recipientes.

Distinguiremos dos casos: hay líquidos que no mojan las

paredes del recipiente (mercurio) y en ellos la superficie libre es convexa; hay otros que mojan las paredes (agua en vidrio

limpio) y entonces la superficie libre se hace cóncava (fig.

Explicamos este fenómeno admitiendo que en la línea de contacto de la superficie libre con el sólido aparece una fuerza hacia el exterior o hacia el interior del líquido, según que

moje o no moje las paredes.

Colocando un tubo de pequeño diámetro (capilar) en un líquido que lo moje, las fuerzas que actúan en todo el períme-

tro interior provocarán una ascensión del líquido dentro del tun (ascensión capilar) (fig. 291).



Fig. 291.—Ascensiones y depresiones capilares.

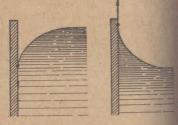


Fig. 290.—Meniscos convexo y

En un líquido que no lo moje se produce una depresión capilar.

Los fenómenos capilares se produce en gran cantidad a hechos experimentales. Cuando, color do en agua el borto de un trozo de papa o género, se moja en toda su extensión, a ha producido un fanómeno capilar. Is

ascensión de la savia en las plantas, desde la raíz hasta la pa, se produce en parte por capilaridad.

2.—Ley de Jurin.—En el tubo capilar de la fig. 291 à cuyo radio es r, la fuerza total que provoca el ascenso del líquido será igual al producto del perímetro por la fuerza que activen la unidad de longitud:

$$F = 2 \pi r \cdot f$$

El líquido ascenderá hasta que el peso de la columna líquida se equilibre con la fuerza F.

Dicho peso es:

riendo ρ el peso específico del líquido. Igualado [34] y [35]:

$$2 \pi rf = \pi r^2 h_\rho$$

de donde:

$$h = \frac{2f}{\rho r}$$
 [36]

fórmula que nos dice que para un mismo líquido las ascensiones capi-

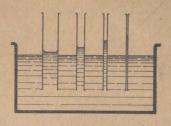
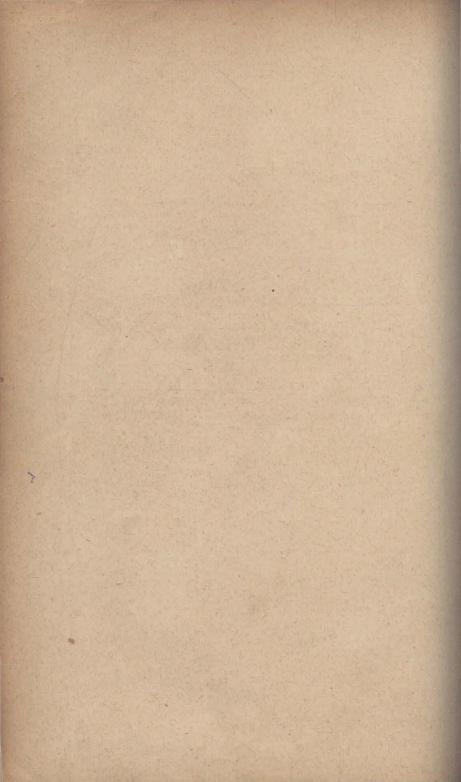


Fig. 292.—La ascensión capilar es inversamente proporcional al radio del tubo.


Fig. 293.—Por capilaridad el agua asciende entre las dos láminas de vidrio alcanzando mayor altura donde las láminas se unen. En el mercurio, en vez de ascenso, hay depresión.

ares son inversamente proporcionales a los radios de los tubos (figura 292).

También deducimos de esa fórmula el valor:

$$f = \frac{h\rho r}{2} \tag{37}$$

que permite calcular f que es, precisamente, la tensión superficial del líquido.

CAPITULO X

HIDRODINÁMICA

§ 132.—Salida de líquidos por orificios. Teorema de Torricelli.—La hidrodinámica se propone el estudio de la distribución de presiones y velocidades en las masas líquidas en movimiento.

Siendo el problema general muy dificultoso, nos limitamos a los casos más sencillos, con hipótesis simplificativas que faciliten su estudio.

Si tenemos un recipiente lleno de líquido y practicamos un prificio en sus paredes, se producirá la salida del líquido. El

teorema de Torricelli permite calcular la velocidad de salida y se enuncia así:

La velocidad de salida de un líquido por un pequeño orificio practicado en la pared delgada de un recipiente de gran sección, es la misma que adquiriría cayendo libremente en el vacío desde la superficie libre hasta el nivel del orificio.

$$v = \sqrt{2 \text{ gh}}$$
 [1]

Para demostrarlo imaginemos un recipiente (fig. 294) de paredes delgadas, en el cual se ha practicado un orificio pequeño, de sección s. El líquido saldrá por s con la velocidad v que deseamos calcular.

En un pequeño intervalo de tiempo la superficie libre AB desciende hasta A'B', habiendo salido por el orificio una masa m de líquido igual a la que ocupaba el volumen ABB'A'.

Si la sección S del recipiente es muy grande con respecto a la del orificio, el líquido se desplaza en él con velocidad muy pequeña, que supondremos nula, es decir, supondremos que no adquiere energía cinética. De este modo, la energía cinética de la masa m que ha salido del recipiente será igual a la energia potencial que ha perdido al descender desde el nivel superior hasta el nivel del ori-

ficio:

$$\frac{1}{2} \text{ mv}^2 = \text{mgh}$$
 [2]

de donde:

$$v = \sqrt{2 gh}$$

fórmula que coincide con la que dá la velocidad del cuerpo que cae libremente en el vacío desde la altura h.

La condición impues

Fig. 295.—Influencia del espesor de la pared en la forma de la vena liquida.

ta de que el orificio sea practicado en pared delgada, proviente del hecho que, en los orificios practicados en paredes gruesas se forman torbellinos que absorben energía modificando la velocidad de salida. (fig. 295).

 \S 133.—Gasto o caudal. Sección contraída.—Si v es la velocidad de salida del líquido y s la sección del orificio, saldri por segundo una cantidad de líquido

$$Q = sv$$

que se llama gasto o caudal. Se mide en $\frac{m^3}{seg}$ 6 $\frac{m^3}{hora}$

En rigor, si bien el líquido sale por un orificio de sección s, forma una vena líquida cuya sección mínima está un poco ma adelante del orificio de salida. Esta sección s_c (fig. 295) se la ma sección contraída, y el cociente.

$$k = \frac{s_{\text{c}}}{s}$$

se llama *coeficiente de contracción*. Así, por ejemplo, para agus saliendo por un orificio circular en pared delgada, es: k = 0.61 El caudal verdadero será entonces:

$$Q=s_c\ .\ v=k\ .\ s\ .\ v$$

Ejemplo:

Se tiene un recipiente de gran sección lleno de agua y a $0.5\,\mathrm{m}$ de la superficie libre, se practica un orificio circular de radio $1\,\mathrm{cm}$. Co

alar la velocidad de salida del agua, el caudal y el líquido total que sale medio minuto, suponiendo que no varía el nivel en el recipiente. De acuerdo con lo dicho será:

fórm. [1]
$$v = \sqrt{2g h} = \sqrt{2 \times 9.8 \times 0.5} = 3.13 \frac{m}{\text{seg}}$$

" [4] $s_c = k s = 0.64 \times \pi \times 1^2 = 2.01 \text{ cm}^2$

" [5] $Q = v \cdot s_c = 3.13 \times 0.000201 = 0.000629 \frac{m^3}{\text{seg}}$

V = Q . t = v. sc . $t = 0,000629 \times 30 = 0.01887$ m³

§ 134.—Comprobación del teorema de Torricelli.—La vali-

dez del teorema de Torriceli se puede comprobar indirectamente midiendo el alcance horizontal de la ve-

na líquida.

Si el orificio se encuentra a una altura h_2 sobre el suelo, aplicando el principio de superposición de movimientos podemos calcular alcance X. En efecto: si se superponen independientemente, el movimiento horizontal de velocidad a y el contra de velocidad a y el cont

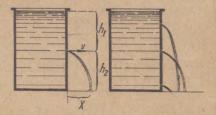


Fig. 296.— Verificación experimental del teorema de Torricelli.

rizontal de velocidad v y el de caída de aceleración g, podemos escribir:

$$X=vt$$
. $h_2=1/2~gt^2$, et mot und accleted en qui et so y le

despejando t en la segunda:

$$t=\sqrt{\frac{2h_2}{g}}$$

y reemplazando en la primera:

$$X = v\sqrt{\frac{2h_2}{g}}$$

pero el valor de v está dado por el teorema de Torricelli:

$$v = \sqrt{2 gh_1}$$

luego:

$$X=\sqrt{\,2\,gh_1}\,\sqrt{\,2\frac{h_2}{g}}$$

o sea:

$$X=2\,\sqrt{\,h_1h_2}$$

La concordancia de este valor calculado con el que se mide experimentalmente comprueba la validez del teorema. Se comprende que el resultado no puede ser más que aproximado porque no es posible realizar experimentalmente las condiciones que impone el enunciado del teorema de Torricelli.

§ 135.—Teorema general de la hidrodinámica.—Dijimes que la hidrodinámica estudia el problema de la distribución de presiones y velocidades en una masa líquida en movimiento.

Debemos distinguir distintas clases de movimientos: puede ocurrir que en cada punto de la masa líquida la velocidad y la presión varíen constantemente. En ese caso, en las fórmulas

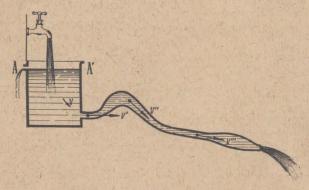


Fig. 297.—Corriente liquida estacionaria.

que dan ambos valores figurarán las coordenadas del punto y el tiempo.

Hay casos en que la velocidad y la presión son constante

en cada punto. Así, por ejemplo, en el caso de la fig. 297, si el nivel del líquido en el recipiente se mantiene constante en AA',

andremos en cada punto de la masa líquida, una velocidad constante, aunque diferente para los distintos puntos. Decimos que se ha roducido un fenómeno estacionario.

Las trayectorias que siguen las partículas líquidas se llaman líneas de corriente.

En algunos casos el líquido circula y en certas regiones se producen remolinos y torbellinos. El movimiento se llama *turbulento*.

Las líneas de corriente que pasan por los bordes de una superficie s cualquiera definen un tubo dentro de la masa líquida a tratés del cual el caudal es constante, pues no sale ni entra líquido por sus paredes laterales; se lo llama filete líquido o tubo de corriente.

Fig. 298. — Movimiento laminar; lineas y tubo de corriente.

Cuando el líquido de diferentes tubos de

corriente no se mezcla, el movimiento se llama laminar.

Para demostrar el teorema general de la hidrodinámica, consideremos m trozo de un filete líquido, comprendido entre dos secciones s y s' en as cuales las velocidades son v y v' respectivamente.

Por ser un filete, el líquido que entra en la unidad de tiempo por la sección s debe ser igual al que sale por s':

$$q = s v = s' v'$$
 [6]

En un pequeño intervalo de tiempo, el líquido de la sección AB pasa a A'B' y el de CD pasa a C'D', siendo vol. ABB'A' = vol CDD'C'. Podemos considerar, pues, que la transformación operada ha consistido en que la masa m ha pasado de la altura h a la altura h'.

Las presiones p y p' han realizado trapajos:

$$T = p s e y - p' s' e'$$
 [7

118. 200.

$$mg [h - h'] = \delta \omega g [h - h']$$
 [8]

siendo δ la densidad y ω el volumen. La variación de energía cinética es:

El peso de la masa m ha realizado un trabajo:

Esta variación debe ser igual a la suma de los trabajos [7] y [8]:

$$\frac{1}{2}$$
 m v'2 - $\frac{1}{2}$ m v² = pse - p's'e' + $\delta \omega g$ [h - h']

o sea:

$$\frac{1}{2} \delta \omega v^{2} - \frac{1}{2} \delta \omega v^{2} = p \omega - p' \omega + \delta \omega g [h - h']$$

de donde:

$$\frac{1}{2} \delta \cdot v^{2} + p' + \delta g h' = \frac{1}{2} \delta v^{2} + p + \delta g h.$$

y como

$$\rho = \delta g$$

puede también escribirse:

$$\left(p' + \frac{\delta v'^2}{2}\right) - \left(p + \frac{\delta v^2}{2}\right) = \rho (h - h')$$

La suma:

$$p + \frac{\delta v^2}{2}$$

se llama presión hidrodinámica y la fórmula [10] nos dice que la diferencia de presión hidrodinámica entre dos puntos de la masa líquida e igual a la diferencia de altura multiplicada por el peso específico de líquido.

Este enunciado comprende, como caso particular, el teore ma general de la hidrostática cuando $v=v^{\prime}=0$.

La fórmula [9], que podemos escribir así:

$$\frac{p}{\rho} + \frac{v^2}{2 g} + h = constante$$

se conoce como expresión del teorema de Bernouilli.

Notaremos que la presión hidrodinámica e igual a la suma de la presión hidrostática más la energía cinética de la unidad de volumen.

§ 136.—Aplicación del teorema general de la hidrodinámica. — Imginemos el recipiente de la fig. 300 y el tubo horizontal (h = cº

ABCDE, cuya sección variable tiene sucesivamente los valores 1 - 2 - 3 - 1. Imaginando un líquido ideal circulando en forma tal, que el roza-

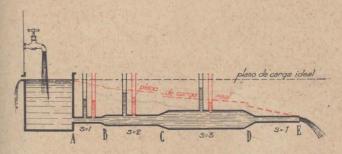


Fig. 300.—Comparación de la distribución de presiones en la circulación de liquidos reales e ideales.

miento con las paredes sea nulo; tendrá velocidades inversamente proporcionales a las secciones, pues debe ser:

$$q = s v = constante.$$

Por lo tanto en CD la velocidad del líquido será la tercera parte de la velocidad en AB. Aplicando el teorema de Bernouilli, en cada punto se verificará que la suma de la altura correspondiente a la presión hidrostática (indicada por el nivel en los tubos \mathbf{m}), más la altura correspondiente a la energía cinética en la unidad de volumen, debe dar un valor constante que coincida con el plano de la superficie libre en el recipiente. Este es el plano de carga hidrodinámico.

En los líquidos reales no ocurre eso, pues debido al rozamiento del líquido con las paredes, este plano de carga es inclinado, de modo que las una pérdida de carga progresiva que aumenta en los cambios de

sección y en las curvas de la cañería.

El teorema de Torricelli puede demostrarse aplicando el teorema general de la hidrodinámica. Llamando po a la presión exterior y considerando dos puntos: uno en el recipiente, próximo a la superficie libre, y el otro en el chorro de salida, tendremos:

Para el punto en la vena líquida:

$$p' = p_o$$
; $v' = v$

Para el punto en el recipiente:

$$p = p_o$$
; $v = 0$

desnivel: h

Aplicando la fórmula [10]:

$$\left(\,p_0\,+\,\frac{\delta\,v^2}{2}\,\right)\,-\,\left(\,p_0\,+\,0\,\right)\,=\rho h$$

de donde:

$$v = \sqrt{2 gh}$$

§ 137.—Viscosidad.—En la definición de flúidos ideales hemos admitido que el desplazamiento de unas porciones con respecto a otras podía realizarse sin la acción de fuerzas.

En los líquidos reales esto no se cumple. Si hacemos girar un vaso lleno de líquido, alrededor de su eje, con velocidad constante, al principio el líquido quedará en reposo, pero poco a poco será arrastrado desde las capas que están en contacto con las paredes hacia el interior del vaso, hasta que, finalmente, todo el conjunto se moverá con igual velocidad. Entre dos capas líquidas

Fig. 301.

que se mueven con distinta velocidad, se ponen en juego fuerzas que se oponen al movimiento de la más veloz y aceleran el de la más lenta. Decimos que el líquido tiene viscosidad.

Si dos capas cuya superficie de separación es AB, de área S, se mueven con velocidades tales que a la distancia *e* sus valo-

res son v_1 y v_2 , se comprueba que la fuerza f de frotamiento en la superficie AB es proporcional al área y a la variación de velocidad por unidad de longitud:

$$f = \eta.s \frac{v_s - v_1}{e}$$
 [12]

El coeficiente η se llama coeficiente de viscosidad y es característico de cada sustancia. Se define como la fuerza que se opone al desplazamiento de una capa líquida con respecto a otra en la unidad de superficie de separación y cuando la variación de velocidad en dirección normal a dicha superficie es de una unidad por cada unidad de longitud.

Para el agua, en el sistema c. g. s. de unidades, su valor a

20° es:

$$\eta = 0.01004 \frac{g}{cm~seg}$$

La temperatura influye mucho sobre el valor del coeficiente de viscosidad. Veamos algunos valores correspondientes al agua:

TABLA IX

temp.	00	50	100	200	500	1000	1600
$\frac{g}{(cm \text{ seg})}$	0.01797	0.01518	0.01307	0.01004	0.00551	0.00284	0.00174

También se suele expresar la viscosidad referida a la de m líquido que se toma como término de comparación.

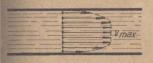


Fig. 302.—Efecto de la viscosidad en la distribución de velocidades en un conducto.

Debido a la viscosidad, cuando circula líquido por una cañería, su velocidad no es constante en toda la sección. La velocidad es nula para una capa líquida en contacto con las paredes de la tubería y crece hasta el eje en que tiene su valor máximo (fig. 302).

§ 138.—El principio de acción y reacción en el movimiento de los líquidos.—Cuando se produce la salida de un líquido por

Fig. 303.—Carrito a reacción

un orificio practicado en un recipiente, el líquido que sale posee una cantidad de movimiento igual al producto de la ma-

sa por su velocidad. Ello equivale al impulso de una fuerza que ha recibido del recipiente que lo contenía. Por el principio de acción y reacción, el recipiente habrá recibido un impulso igual y contrario; luego, al salir el líquido actúa sobre

el recipiente una fuerza de sentido contrario a la dirección de salida.

Fig. 305.—Molinete hidráulico,

En efecto: cuando el líquido se encuentra en equilibrio dentro del

recipiente, están equilibradas las fuerzas que ejerce sobre el recipiente y las que éste ejerce sobre el líquido.

Suprimida una parte de la pared (orificio) el sistema se desequilibra, pues desaparece en esa región la fuerza que el recipiente ejercía sobre el líquido y queda como excedente

Fig. 304. — Reacción de la vena liquida.

con respecto al recipiente la que el líquido ejerce sobre la pared opuesta. Si el recipiente puede hacerlo, se moverá bajo la ac-

ción de esa fuerza.

U-W

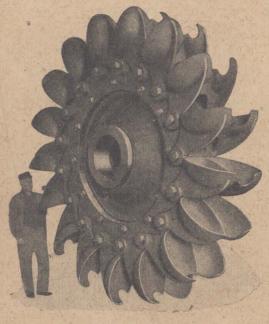
Fig. 306a—Esquema de turbina hidráulica de acción (rueda Pelton).

Como aplicaciones, podemos mencionar: el carrito a reacción de la fig. 303, el aparato a reacción de la fig. 304 y el molinete hidráulico de la fig. 305 en el que actúa una cupla de fuerzas.

Las turbinas hidráulicas, muy utilizadas en la técnica, funcionan por la aplicación de estos conceptos.

Existen de dos tipos: de acción y reacción.

En la de acción se produce la rotación de una rueda



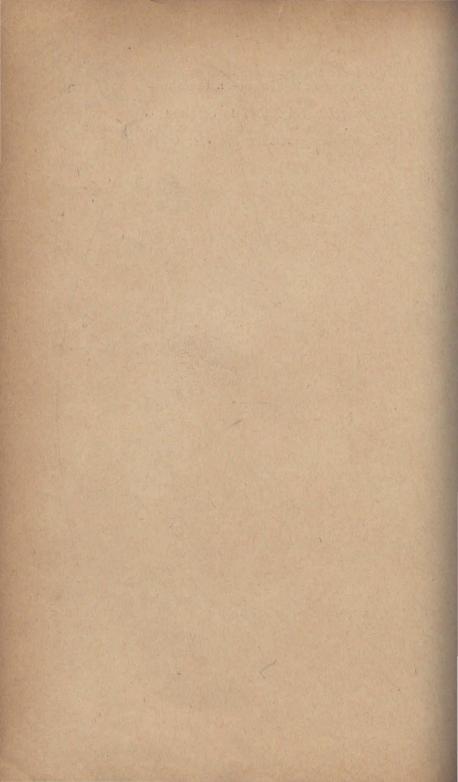

Fig. 306b.—Rueda Pelton.

Fig. 307.—Modelo de turbina hidráulica a reacción.

por el efecto del choque, contra aletas convenientemente dis-puestas, de un chorro de líquido que sale de una tubería (fig.

En las de reacción (fig. 307) la rotación se produce por la reacción de la corriente líquida al obligarle a cambiar de dirección de movimiento en la rueda móvil.

Bol 8.

CAPÍTULO XI

GASES - PRESIÓN ATMOSFÉRICA - NEUMOSTÁTICA

§ 139.—Gases. Peso del aire.—Hemos definido los flúidos en el § 104, incluyendo a líquidos y gases en esa denominación. Pero luego hemos estudiado la mecánica de los líquidos atribuyéndoles la propiedad de ser incompresibles. En el estudio de los gases veremos que se caracterizan porque su volumen puede modificarse.

Toda masa de gas ocupa integramente el recipiente en que está colocado, y si éste es de volumen variable, el gas se comprime o se dilata de acuerdo a las modificaciones que expe-

rimenta el recipiente.

Como todos los cuerpos, los gases tienen peso. Para com-

probarlo basta equilibrar sobre una balanza un balón con llave al cual se ha extraído el aire o parte de él con ayuda de una máquina neumática.

Se observa que al abrir la llave L, penetra nuevamente el aire y la balanza se desequilibra acusando un aumento de peso del balón.

Colocando pesas en el otro platillo para restablecer el equilibrio, se obtiene el peso del aire extraído.

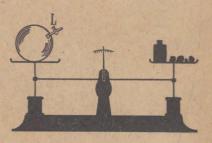


Fig. 308.—Determinación del peso del aire.

Se determina que cada metro cúbico de aire, en condiciones normales, pesa aproximadamente 1,3 kilogramos.

§ 140.—Presión atmosférica, Experiencia de Torricelli.

La tierra está rodeada por una masa de aire, en cuya parte inferior estamos colocados. Se le atribuye un espesor de más de 500 Km, aunque, como veremos más adelante, no puede hablarse de límite de la atmósfera, ya que ascendiendo se produce una disminución progresiva y continua de densidad. La región de la atmósfera más próxima al suelo (troposfera), en la cual se producen los fenómenos atmosféricos co-

rrientes, no pasa de 12 Km. El resto constituye la estratosfera

(fig. 309).

Todos los cuerpos colocados en la atmósfera están sometidos a una presión que llamamos presión atmosférica, cuyo origen podemos atribuir al peso de la masa de aire que la forma

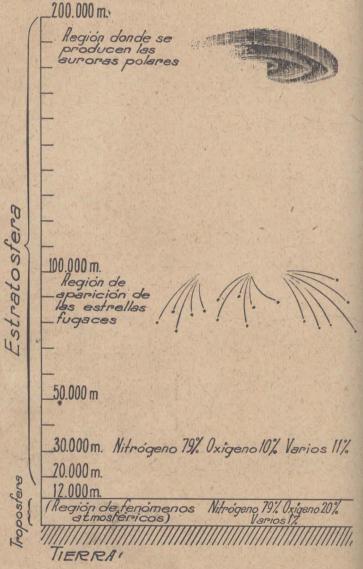


Fig. 309.—Distribución de las capas atmosféricas.

La existencia de esta presión se puede constatar con experiencias muy simples. Si tomamos un vaso cualquiera lleno de agua, lo tapamos con una hoja de papel y luego lo invertimos, observamos que el papel no cae, sosteniendo al agua del vaso (fig. 310). Como sobre el papel actúa la presión hidros-

Fig. 310.—Comprobación de la existencia de la presión atmosférica.

tática del líquido, dirigida hacia abajo, esto nos obliga a admitir que de abajo hacia arriba actúa otra presión H.

La primera experiencia para medir la presión atmosférica fué realizada por el discípulo de Galileo, *Evangelista Torrice*-

lli (1608 - 1647).

Consiste en llenar con mercurio un tubo de aproximadamente un metro de longitud, cerrado en uno de sus extremos. Se tapa el extremo abierto cuidando que no queden burbujas de aire y se lo coloca con el extremo cerrado hacia arriba en

una cubeta con mercurio. Se observa que al destapar el extremo que quedó sumergido en el mercurio de la cubeta la columna mercurial desciende en el tubo hasta que su extremo queda aproximadamente a 76 cm de altura con respecto al nivel de

la superficie libre en la cubeta (fig.

311).

Esto nos indica que la presión atmosférica ejercida sobre el mercurio de la cubeta es igual a la presión hidrostática de la columna de mercurio de 76 cm de altura.

Cualquiera que sea la inclinación del tubo, la diferencia de nivel entre las superficies libres del mercurio en el tubo y en la cubeta es la misma, aunque aumente la longitud del tubo ocupada por el mercurio (fig. 311).

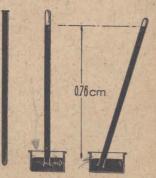


Fig. 311.—Experiencia de Torricelli.

§ 141.—Presión atmosférica normal.—En cada lugar la presión atmosférica sufre variaciones que presentan cierta vinculación con los fenómenos meteorológicos. Además, el peso específico del mercurio varía con la temperatura y con el valor de g.

Definiremos como presión atmosférica normal la que equilibra una columna de mercurio de 76 cm de altura a 0° grado de temperatura y para un valor normal de la aceleración de la gravedad (g=980,665 cm/seg²).

En virtud del teorema general de la hidrostática, la presión debida a dicha columna de mercurio es:

H = h .
$$\rho$$
 = 76 cm \times 13,59 $\frac{\text{gr}}{\text{cm}^3}$

$$H = 1033 \frac{gr}{cm^2}$$
 [1]

esta presión se utiliza como unidad con el nombre de atmósfera.

1 atm. = 1,033
$$\frac{\text{Kgr}}{\text{cm}^2}$$
 [2]

En la práctica se expresa la presión atmosférica directamente en *milímetros de mercurio* por ser proporcionales las alturas y las presiones.

142.—Barometría. Barómetros de mercurio.—Los aparatos que se utilizan para medir la presión atmosférica se llaman barómetros.

Distinguiremos fundamentalmente dos tipos: de

mercurio y metálicos. -

Los barómetros de mercurio se fundan todos en la experiencia de Torricelli. Colocando al lado del tubo una regla graduada cuyo cero coincida con el nivel del mercurio en la cubeta, se lee directamente la presión por la altura de la columna en el tubo. Este dispositivo constituye el barómetro de cubeta.

Este barómetro presenta varios inconvenientes: aparte de ser incómodo su traslado, las variaciones de la presión atmosférica modifican a la vez el nivel del mercurio en el tubo y en la cubeta, haciendo variar la posición que debe ocupar el cero de la escala.

El barómetro de sifón de Gay-Lussac es portátil y su escala lleva el cero en la parte central, con lo cual la presión se determina leyendo las posiciones de ambos meniscos del mercurio (fig. 313).

El parómetro de Fortin es uno de los más cómo-

Fig. 312.—
Barómetro
de cubeta.

los y usuales. Es un barómetro de cubeta con la particularidad de que el fondo de la misma, que es de gamuza, puede des-

plazarse mediante un tornillo adecuado, con lo cual se lleva exactamente a coincidir la superficie del mercurio con el cero de la escala, que está indicado por el extremo de una punta de marfil (v) (fig. 314).

El conjunto se encuentra protegido con una envoltura metálica, que sólo deja visibles la parte superior del tubo y la parte de la cubeta que es de vidrio y permite ver la punta de mar-

fil.

Fig. 313.—

Barómetro de sifón. Las lecturas se efectúan con ayuda de un vernier, cuya aproximación oscila, según los modelos, entre 0,1 y 0,01 mm.

Para el transporte del barómetro se levanta el fondo de la cubeta, con lo cual el mercurio llena totalmente el tubo, evi-

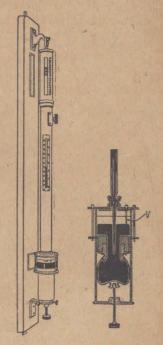


Fig. 314.—Barómetro de Fortin.

Fig. 315.—Barómetro metálico de Bourdon.

tándose así que pueda romperse o penetrar aire en su interior.

Para que la lectura sea correcta es necesario que el tubo esté bien vertical. Para ello se cuelga el barómetro por un anillo de su parte superior o se lo sostiene en un trípode con suspensión cardánica.

§ 143.—Barómetros metálicos.— Para determinaciones de menor precisión se

utilizan barómetros metálicos cuya lectura es más simple, pues

se realiza con aguja y cuadrante. Existen dos tipos: Bourdon

v Vidi. El de Bourdon consiste en un tubo curvo, hueco, de sección elíptica y cerrado en ambos extremos (fig. 315), de cuvo

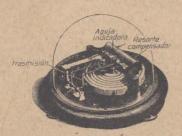


Fig. 316.—Barómetro metálico de Vidi.

interior se ha extraído el aire. Al aumentar la presión exterior aumenta su curvatura, e inversamente al disminuir la presión disminuye la curvatura. Estando fijo uno de los extremos, las variaciones de forma originan desplazamientos del otro, que una cremallera transforma en rotaciones de una aguja móvil frente a una escala.

En el barómetro aneroide de Vidi las variaciones de la presión at-

criptora por intermedio de un flotador, y se registran sobre el tambor giratorio.

mosférica producen deformaciones en la tapa delgada de una caja metálica cerrada, sin aire en su interior (figura 316).

Estas deformaciones se transmiten a una aguja que se mueve frente a una escala.

La escala de los barómetros metálicos se gradúa por comparación con los de mercurio, y, como hemos dicho, son menos precisos y se deterioran fácilmente.

§ 144.—Correcciones a las lecturas barométricas.—Hemos dicho que la presión atmosférica se define en altura de columna de mercurio a cero grado de temperatura y para aceleración normal de la gravedad.

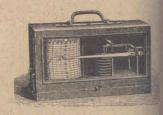


Fig. 318.—Barómetro metallico registrador o barógrafo.

Sin embargo, cuando se lee la presión en un barómetro corriente de mercurio, no se encuentra en esas condiciones, pues ni la escala en que se lee la altura, ni el mercurio se encuentran a dicha temperatura; además, por efecto de capilaridad, el mercurio ha ascendido menos de lo que corresponde a la presión del momento.

Será pues necesario hacer las correcciones: de temperatura, de capi-urdad y reducción a aceleración normal de la gravedad.

a) Para la corrección de temperatura, se deben tener en cuenta: el conficiente de dilatación lineal del material de la escala y el conficiente de Matación cúbica del mercurio, la altura leida y la temperatura del instante en que se leyó la presión.

Hay tablas de doble entrada en que, fijado el material de la escala del barómetro, se lee directamente la corrección de temperatura en base

temperatura y presión leídas. La corrección de temperatura debe restarse a la presión leída.

TABLAX

Corrección de temperatura en mm para lectura barométrica con escala de latón

Tempera- turas	Alturas leidas						
	740	750	760	770	780		
10°	1,21	1,22	1,24	1,26	1,27		
15°	1,81	1,83	1,86	1,88	1,91		
20°	2,41	2,44	2,47	2,51	2,54		
25°	3,01	3,05	3,09	3,13	3,17		

b) La corrección de capilaridad depende del diámetro del tubo. La tabla da su valor en función del diámetro del tubo y de la altura del menisco (fig. 319). Esta corrección debe sumarse a la lectura.

TABLA XI

Corrección de Capilaridad

Diámetro del tubo mm	Altura del menisco en mm					
	0.4	0.8	1.0	1.2	1.4	
4 6 8	0,84 0,27	1,54 0,56 0,29	1,98 0,78 0,38	2,37 0,98 0,46	1,21 0.56 0,29	
10 12	A PAR	0,15 0,07	0,20 0,10	0,25 0,13	0,15	

En un barómetro de Fortin, en que el diámetro del tubo es 10 mm, se ha leído una altura H = 770 mm a 200 de temperatura siendo la flecha del menisco f=1.2mm. Corregir los errores de temperatura y capilaridad.

De la primera tabla deducimos:

Corrección de temperatura: $\Lambda = -2.51$ mm

De la 2ª:

Corrección de capilaridad: C = + 0.25 mm

Fig. 319.—Flecha del menisco en el barómetro de mercurio.

Lectura corregida:

$${
m H'} = {
m H} - {
m \Delta} + {
m C}$$

 ${
m H'} = 770 - 2,51 + 0.25 = 767,74 \ {
m mm}$

c) Para corregir con respecto a la aceleración de la gravedad se

multiplica la lectura corregida por el cociente — de la aceleración del

lugar por la aceleración normal. Si para Buenos Aires admitimos $g=979,669,\,{\rm resulta}$ en el ejercicio anterior:

$$H_c = 767,74 \frac{979,669}{980,665} = 766,96 \text{ mm}$$

Debemos notar que todas estas correcciones se aplican a la altura correspondiente a la tangente en la cúspide del menisco (A en la fig. 319). Se deduce de los trozos de tablas reproducidos y del ejemplo, que la corrección más importante es la de temperatura.

8 145.—Comprobaciones de la existencia de presión atmosférica.-Hemos mencionado la experiencia del vaso lleno de

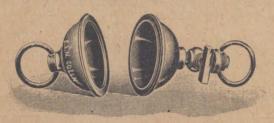


Fig. 320.-Hemisferios de Magdeburgo.

agua e invertido después de haberlo tapado con un papel, para comprobar la existencia-

de la presión atmosférica.

En el siglo 17, Otto von Guericke (1602-1686), realizó la hoy clásica experiencia de los hemisferios de Magdeburgo. Se extrae el aire en una esfera dividida en dos hemisferios, que se adosan perfectamente. La presión atmosférica actuando sobre la superficie exterior, impide separarlos, a menos que la fuerza sea suficientemente grande. Von Guericke utilizó hemisferios cuyo diámetro interior era aproximadamente de 55 centímetros.

Fig. 321.-Pipelo para liquidos. La presión atmosfe rica impide d derrame.

Admitiendo que con sus máquinas imperfectas de vacío hibiera quedado en el interior aire a una presión mitad de la exterior, la fuerza necesaria para separarlos habría sido de

322.—Rompevejigas.

unos 1.200 Kgr. Se explica que necesitara ocho caballos para conseguirlo (ver plancha VI).

La fuerza total sobre cada hemisferio se calcula proyectando las fuerzas normales que actúan en cada elemento de superficie, sobre la perpendicular al plano diametral que los separa. Se demuestra que la resultante total es igual

Fig. 323.—Corta-manzanas.

$$F = \pi R^2 p = \pi \times 27,5^2 \times \frac{1,033}{2} \cong 1.200 \text{ Kgr}$$

a la fuerza que actuaría normalmente sobre el

area del círculo máximo. En este caso, es:

En las experiencias de las figuras 322 y 323 la presión atmosférica se manifiesta por la rotura de una membrana tensa

o el corte de una manzana apoyada sobre la boca de un recipiente en cuyo interior se hace el vacío.

Con el tubo de la figura 324, de cuyo interior se ha extraído el aire, se obtie-

ne una fuente en el vacío, al abrir la llave. En la figura 325. se muestra el efecto de la presión atmosférica sobre un recipiente de hojalata que se enfrió repentinamente después haberlo calentado y ceticamente.

Fig. 325.—Acción de la presión atmosférica sobre un recipiente rrado hermé- en cuyo interior se ha producido un enrarecimiento.

Fig. 324. Fuente de vacio.

§ 146.—Variación de la presión atmosférica con la altura.
—Si ascendemos por una montaña o nos elevamos en un avión llevando un barómetro, observaremos que la presión disminuye a medida que aumenta la altura. Es que siendo el aire un flúido pesado podemos aplicar el teorema general de la hidrostática. La diferencia de presiones entre dos puntos cuyas alturas son h₁ y h₂, será:

$$p_2 - p_1 = \rho (h_2 - h_1)$$
 [4]

siendo p el peso específico del aire.

La dificultad que se presenta es que la variación de presión va acompañada por una variación de peso específico del

aire, de modo que ρ no es constante.

Podremos aplicar la fórmula [4] para a quellas diferencias de altura suficientemente pequeñas como para que pueda considerarse constante el peso específico del aire.

Así, por ejemplo, calcularemos cuánto hay que ascender al nivel del mar para que la presión disminuya 1 mm. Es decir:

1 mm de Hg = 1,359
$$\frac{gr}{cm^2}$$

y siendo $ho=0.001293~{\rm gr\over cm^3}$, aplicando la fórmula [4]

$$h_2 - h_1 = \frac{p_2 - p_1}{\rho} = \frac{1,359}{0,001293}$$
 cm = 1051 cm

Luego: al nivel del mar la presión atmosférica disminuye aproximadamente 1 mm cada 10 ½ metros de ascenso.

Para alturas grandes se utilizan, con objeto de determinar la diferencia de nivel en base a las diferencias de presión (nivelación barométrica), fórmulas más exactas deducidas por otros caminos y corregidas experimentalmente.

Así, por ejemplo, pueden utilizarse las siguientes:

para alturas hasta 1000 metros:

$$h_2 - h_1 = 16000 (1 + 0.004 t) \frac{p_1 - p_2}{p_1 + p_2}$$
 [5]

y para alturas mayores:

sendo t la temperatura media entre ambas estaciones.

147.—Naturaleza de la presión en los gases.—Aunque en cálculo de la variación de presión con la altura aplicamos el corema general de la hidrostática, es interesante hacer notar que la presión que un gas ejerce sobre las paredes del recipiente en que está contenido no es de la misma naturaleza que la de los líquidos. En la experiencia del vaso invertido del § 140, si en lugar del agua dejamos aire, cuyo peso específico es 800 veces menor, el papel cae, porque en ese caso no sólo actúa sobre a el peso de la columna gaseosa que queda dentro del vaso, sino también la fuerza elástica del gas que es igual a la del aire exterior.

Si imagináramos dos recipientes, uno lleno de agua y el otro de aire a la presión atmosférica, y los lleváramos a un lugar del espacio en que no se manifestara la acción gravitatoria, desaparecería la presión del líquido sobre las paredes y el fondo del recipiente, y, no así la del gas, que subsistiría casi íntegramente, porque en ese caso la presión debida al peso es mínima comparada con la que producen las fuerzas elásticas.

En la teoría cinética de la materia se admite que los gases están formados por moléculas que se mueven con rápidos movimientos de traslación chocando entre sí y contra las paredes. Del conjunto de choques contra las paredes del recipiente resulta la presión ejercida por el gas. Con esta imagen se explica fácilmente el hecho de que los gases ocupen totalmente el volumen en que se hallan colocados.

§ 148.—El principio de Arquímedes en gases.—El princi-

pio de Arquímedes se aplica a los gases tal como se ha enunciado para los líquidos.

Todo cuerpo sumergido en un gas recibe un empuje de abajo hacia arriba igual al peso del gas

que desaloja.

Se lo comprueba fácilmente con el aparato de la figura 326 (baroscopio o baróscopo). Una esfera y una pesa de menor volumen se equilibran en el aire. Al colocar el sistema bajo una campana y hacer el vacío, como desaparece el empuje del aire, la esfera cuyo volumen era mayor y, por lo tanto, experimentaba mayor empuje, pesará más, y el baróscopo se desequilibra.

Fig. 326.— Baroscopio para comprobar el principio de Arquimedes en gases.

Un razonamiento análogo al que se hizo en el caso de los líquidos permite asegurar la validez de esta ley (§ 118).

Como consecuencia de este principio, cuando pesamos cuerpos en el aire, con una balanza de platillos, en rigor, lo que se iguala es el peso aparente del cuerpo con el peso aparente de las pesas, o sea, las diferencias entre los respectivos pesos y empujes.

Si el cuerpo que se pesa es de distinta densidad que las pesas, el equilibrio en el aire no subsistirá en el vacío como en el caso del baróscopo. Por ello, cuando se desean determinaciones precisas, se reduce la pesada al vacío por cálculo o con avis-

da de tablas especiales.

Fig. 327.—Aerostato a aire caliente de Montgolfier (1783).

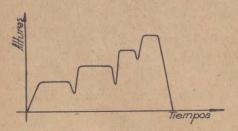


Fig. 328.—Curva de ascensión de un aeróstato.

§ 149.—Aeróstatos.— Los aeróstatos, hoy en desuso, resuelven el problema del vuelo del mús liviano que el aire.

Se basan exclusivamente en el principio de Arquímedes: ascienden porque el empuje es mayor que el peso. Están constituídos por una envoltura

iviana de gran volumen, que se llena con gas de alumbrado, idrógeno o helio. Si V es el volumen total, P el peso de la envoltura, barquilla y gas interior, y ρ el peso específico del sire, la fuerza ascensional será:

$$F = \rho \cdot V - P$$
 [7]

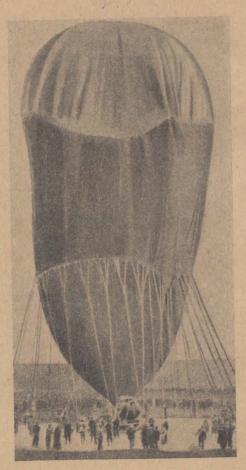


Fig. 329.—Aeróstato empleado por Piccard en su ascensión a la estratosfera con fines de investigación científica (1932).

Esta fuerza no se mantiene constante, pues al ascender disminuye ρ .

Para que la presión interna no supere a la exterior, el globo tiene una válvula en su parte inferior.

Al principio, como no se lo llena totalmente, el globo asciende y se va dilatando hasta tomar su forma esférica. Alcanza así una posición de equilibrio estable. Pero debido a las pérdidas de gas y entrada del aire exterior, pierde estabilidad y comienza a descender; si se desea ascender más es necesario disminuir el peso, para lo cual se deja caer parte del lastre. El

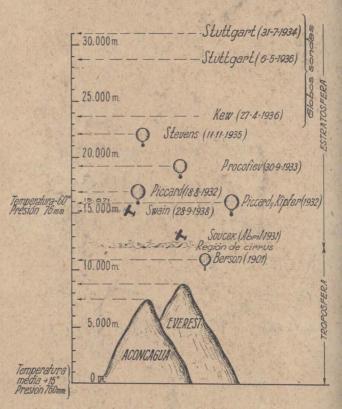


Fig. 330.—Alturas alcanzadas en diversas ascensiones.

proceso se repite hasta que la falta de lastre obliga al descenso. La habilidad del aeronauta se manifiesta en la regulación en el consumo del lastre. El ascenso se verifica por escalones como indica la figura 328.

Los hermanos Montgolfier, en 1783, fueron los primeros en realizar una ascensión en un globo lleno de aire caliente como los que en la actualidad lanzan los niños en sus juegos

EXPERIENCIA HISTÓRICA DE LOS HEMISFERIOS DE MAGDEBURGO.

En 1654 Otto Von Gericke, en presencia del Emperador Fernando III, empleó 16 caballos para separar dos hemisferior ajustados y en cuyo interior había hecho el vacio (véase § 145).

Los hemisferios tenían aproximadamente 55 cm de diámetro; la diferencia entre las presiones atmosférica e interna, en su superficie, determinó una fuerza total equivalente a la de ocho caballos. Se los guarda en el museo de Berlin.

BIBLIOTECA TALIONAL

CAPÍTULO XII

LEY DE BOYLE-MARIOTTE - BOMBAS - MÁQUINAS NEUMÁTICAS

§ 150.—Compresibilidad de los gases - Ley de Boyle-Mariotte (1).—Hemos visto que una masa de gas adapta su volumen al del recipiente que la contiene; por tanto, se expandirá si este último aumenta y se comprimirá si disminuye.

Las variaciones de volumen van siempre acompañadas por

cambios de la presión en la masa gaseosa y a menudo también por cambios de temperatura.

Si en el aparato de la figura 231 aplicamos una fuerza f 301 sobre el pistón P, el gas encerado en el recipiente cilíndrico reducirá su volumen, pero al mismo tiempo aumentará su presión

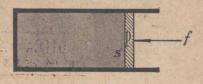


Fig. 331.

El émbolo avanzará, comprimiendo al gas, hasta una posición en que la presión interna de éste haya aumentado en un

valor igual a $\frac{f}{s}$, equilibrando el aumento de la presión exterior debido a la fuerza aplicada.

Si la compresión se efectúa rápidamente, se observará,

Fig. 332.—Eslabón neumático.

además, que el gas se calienta.

La figura 332 muestra el aparato llamado eslabón neumático;

una compresión brusca provoca el encendido de un trozo de yesca, que se ve arder a través de las paredes de vidrio del cilindro.

⁽¹⁾ Descubierta por Roberto Boyle, de Oxford, en 1662, e independientemente por el físico frances Mariotte, en 1679.

Si la fuerza se aplica en forma gradual, la compresión se produce lentamente y no provoca fenómenos térmicos apreciables. Suprimida la fuerza f, el gas vuelve a su volumen inicial, expandiéndose y disminuyendo su presión interna.

Nos limitaremos en lo que sigue a estudiar el comportamiento de los gases cuando se comprimen o se expanden sin cambiar su temperatura (compresiones y expansiones isotér-

micas).

Boyle y Mariotte descubrieron independientemente la ley que rige las variaciones isotérmicas del volumen de una masa gaseosa, la que se enuncia así:

A temperatura constante, los volúmenes de una masa gaseosa son inversamente proporcionales a las presiones que soporta.

Llamando p_1 , p_2 a las presiones correspondientes a dos estados de una misma masa gaseosa y V_1 , V_2 a los volúmenes respectivos, debe tenerse:

Fig. 333.—Verificación experimental de la ley de Boyle-Mariotte.

$$\frac{p_1}{p_2} = \frac{V_2}{V_1}$$
 [1]

de donde:

$$p_1V_1 = p_2V_2 = constante$$

y también, refiriéndonos a dos valores correspondientes cualesquiera de la presión y del volumen, podemos establecer la expresión más general de la ley de Boyle-Mariotte:

§ 151. Verificación experimental—1. Puede hacerse la verificación para presiones poco superiores a una atmósfera con el tubo de Mariotte (fig. 333).

Es un tubo en U con una rama corta cerrada, en la cual queda una masa de aire que inicialmente ocupa un volumen V₁, proporcional a la longitud AB, pues

el tubo es cilíndrico y bien calibrado.

Colocando mercurio de modo que en las dos ramas quede

al mismo nivel CB, el volumen V1 de aire estará a la presión exterior. Por tanto, p₁ = H = 76 cm de mercurio aproximadamente. Agregando mercurio por el extremo abierto D, la comna mercurial ejercerá presión sobre el aire contenido en AB disminuyendo su volumen.

Se observará que este volumen se reduce a la mitad de

 V_1 , (AB' = $\frac{AB}{2}$), cuando el desnivel entre las superficies del mercurio en las dos ramas es de 76 cm.

Como la presión vale ahora: p₂ = 2 atmósferas (la que había inicialmente, más los 76 cm de mercurio de desnivel), hemos comprobado que a presión doble le corresponde volumen mitad, de acuerdo al enunciado.

Pueden hacerse verificaciones para posiciones intermedias del nivel del mercurio en el tubo abierto.

Así por ejemplo, en un tubo de Mariotte en el que AB = 20 cm, estando los ceros de las escalas al mismo ni-

vel, podremos establecer para el estado inicial (aceptando que el barómetro marque la presión normal H = 760 mm en el momento de la experiencia):

$$p_1 = 76 \text{ cm } \left(p_1 = 76 \times 13,59 \frac{\text{gr}}{\text{cm}^2} \right)$$

$$V_1 = 20$$
 cm. [$V_1 = 20 \times sección$ del tubo cm³]

Cuando el volumen se reduce a la mitad se tiene:

$$p_2 = 76 + 76 = 152$$
 cm.

$$V_2 = \frac{20}{2} = 10 \text{ cm}.$$

(El nivel del mercurio en la rama abierta llegará entonces a 86 cm, para para que el desnivel sea 76 cm, ya que

en la cerrada subió 10 cm). En una posición intermedia cuando el volumen es $V_3 = 15$ cm $= \frac{34}{25}$ V_1 , se tiene un desnivel de sólo 25 1/3 cm. La presión correspondiente es: $p_s = 76 + 25 \frac{1}{3} = 101 \frac{1}{3}$ cm

Fig. 334.—Comprobación de la ley de Boyle-Mariotte para presiones mayores y menores que la atmosférica.

= 4/3 p_i, cumpliéndose la ley:

 $p_1 v_1 = p_2 v_2 = p_3 v_3 = constante$

$$76 \times 20 = 152 \times 10 = 101 \frac{1}{3} \times 15 = 1520$$

 L_0 mismo puede verificarse para cualquier otro valor del volumen entre $V_{_1}$ y $V_{_2}.$

2.—Otra disposición práctica.—La comprobación puede extenderse más allá de las 2 atmósferas, y también a presiones

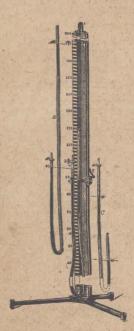
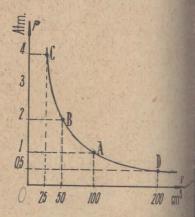


Fig. 335.—Aparato para comprobar la ley de Boyle-Mariotte.

menores, empleando el aparato representado en esquema por la figura 334, formado por un tubo cerrado con una llave L, en que se coloca la masa de gas sometida a la experiencia, y otro abierto, comunicado con el primero por su parte inferior mediante un tubo de goma lleno de mercurio. Según el sentido de los desniveles, el gas se comprime o se expande. La figura 335 muestra un modelo con su soporte, y la regla graduada en que se leen los niveles del mercurio.


En la figura 334 se han establecido los valores de p y V para 3 estados, comprobándose que $p_1v_1 = p_2v_2 = p_3v_3$.

§ 152.—Representaciones gráficas—
1. Tomando dos ejes de coordenadas OP
y OV sobre los que se llevan como absosas los valores de los volúmenes V
como ordenadas los de las presiones p
puede re-

puede representarse cada estado de la masa gaseosa por un punto

del plano. Uniendo todos esos puntos se tiene la curva representativa del fenómeno.

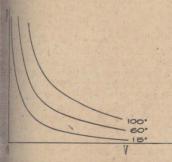
Consideramos 4 e stados sucesivos de una masa de gas a la temperatura de 15 grados centígrados, y sean sus presiones y volúmenes los que siguen:

 $p_1=1$ atmósfera $V_1=100~cm^3$ $p_2=2$ atmósferas $V_2=50~cm^3$

Fig. 336.—Representación gráfica la ley de Boyle-Mariotte.

 $p_3=4\,atm \acute{o}s feras\,\,\,V_3=25\,cm^3$

 $p_4 = 0.5 \text{ atmósfera}$ $V_4 = 200 \text{ cm}^3$


En la figura 336 estos cuatro estados están representa-

os por los puntos A, B, C y D, respectivamente.

Como para todos los estados de la masa gaseosa se cumple la condición: p. V = constante, siempre que siga a la temperatura dada, es posible trazar la curva, ya que responde a ecuación: xy = a, siendo, por tanto, una hipérbola equilátera, que no corta a los ejes, puesto que:

para
$$p=0, V=\infty, [V=rac{a}{p}=rac{a}{0}=\infty]$$
The para $p=0, p=\infty, [p=rac{a}{V}=rac{a}{0}=\infty]$

2.—Haciendo variar la temperatura de la masa de gas

lig. 337.—Isotermas de un gas a diversas temperaturas.

emperatura de la masa de gas estudiada cambia la constante a, pero no el tipo de curva. Se tiene así una hipérbola para cada temperatura (fig. 337).

Cada una de ellas constituye una isoterma o línea isotérmica.

§ 153.—Densidad y presión en los gases.—Como todo aumento de presión implica una disminución de volumen, se comprende fácilmente que origina un aumento de densidad.

Para dos presiones p₁ y p₂ y una masa M de gas, se tienen las densidades:

$$\delta_1 = \frac{M}{V_1} \text{ y } \delta_2 = \frac{M}{V_2}$$

y, como la masa es constante:

$$\begin{array}{c} \frac{\delta_1}{\delta_2} = \frac{M}{V_1} \\ \frac{M}{V_2} = \frac{V_2}{V_1} \end{array}$$

pero, de acuerdo con la ley de Boyle-Mariotte: $\frac{V_2}{V_1} = \frac{p_1}{p_2}$, y,

entonces:

$$\frac{\delta_1}{\delta_2} = \frac{p_1}{p_2}$$

Por tanto, las densidades de una masa de gas, considerada a temperatura constante, son proporcionales a las presiones que soporta.

Ejemplo.—A la temperatura de 0° (hielo en fusión), y presión de 760 mm de mercurio, la densidad del aire es 0,001293 g/cm³. Calcular qué densidad tendrá a 4 atmósferas de presión y a la misma temperatura.

Se tiene:

$$p_1 = 1 \text{ atmósfera; } \delta_1 = 0,001293 \text{ g/cm}^3$$

$$p_2 = 4$$
 atm.

$$\delta_2 \, = \, \delta_1 \, \, \frac{p_2}{p_1} \, = \, 0.001293 \, \mathrm{g} | \mathrm{cm}^3 \times 4 = 0.005172 \, \, \mathrm{g} | \mathrm{cm}^3.$$

§ 154 —Inexactitud de la ley de Boyle-Mariotte. — Los gases reals no cumplen rigurosamente la ley de Boyle-Mariotte. Numerosos expermentadores han medido con toda precisión las variaciones de volumen de masas de los gases más conocidos, relacionándolos con las presiones correspondientes y con los valores iniciales de éstas. Regnault operó con aire nitrógeno, hidrógeno y anhídrido carbónico entre 1 y 30 atmósferas usando un aparato análogo al tubo de Mariotte, cuya rama larga tenta 24 metros de longitud. Este tubo fué arrimado a la torre del "Colego de Francia" y sostenido por un mástil; la rama corta tenía 3 metros de largo y estaba envuelta por otro tubo de vidrio, por el que circulaba agua a objeto de mantener constante la temperatura. El mercurio se inyectam por la parte inferior con una bomba, dando a la presión inicial valore arbitrarios, y aumentándola luego hasta reducir a la mitad el volume del gas encerrado en la rama corta.

Siendo: p_0 , v_0 la presión y volumen iniciales y p_1 la presión que reducía el volumen v_0 a su mitad v_1 , Regnault estableció que la relación: $\frac{p_0}{p_1} \frac{v_0}{v_1}$ era distinta para cada gas y cambiaba con el valor p_0 de la presión

p₁ v₁ inicial.

El cumplimiento riguroso de la ley de Boyle-Mariotte exige en cambio que:

$$\frac{p_0 \ v_0}{p_1 \ v_1} = 1$$

para cualquier gas y cualquier valor de p_0 , ya que se conserva la temperatura constante. El hidrógeno dió un valor menor que 1, comprimiéndose menos de lo previsto: $p_1>2$ p_0 para $v_1=\frac{v_0}{2}$, mientras que colos otros gases fué mayor que la unidad.

Otros experimentadores operaron a diversas temperaturas con gass diferentes y para presiones más altas y más bajas que una atmósfem

[3]

legando a la conclusión de que la ley de Boyle-Mariotte es sólo aproximada, y confirmando las siguientes conclusiones establecidas por Regnault:

- 1º. A la temperatura ordinaria todos los gases, a excepción del hidrógeno, se comprimen más de lo que indica la ley de Boyle-Wariotte.
- 2º Para presiones próximas a una atmósfera las diferencias son bastante pequeñas, como para que, en general, pueda hacerse uso de esta ley.
- 3º. Las diferencias aumentan con la presión; a 30 atmósferas la ley es aproximada en 1/100 para el aire, el ázoe y el hidrógeno, pero no para el CO² ni para los gases fácilmente licuables.

Amagat estudió la compresibilidad de numerosos gases

entre 1 y 3000 atmósferas, determinando los valores de los productos po en cada caso.

Los gráficos de la figura 338 representan algunos de los resultados: en ellos se han tomado como abscisas las presiones p v como ordenadas los productos pv. Si el gas cumpliera rigurosamente la de Boyle-Mariotte. para cada temperatura, debería tenerse pv = constante, y el gráfico se reduciría a una recta paralela al eje de las presio

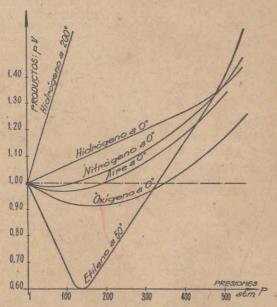


Fig. 388.—Compresibilidad isotérmica de los gases reales.

nes (línea punteada). El valor inicial de pv se ha tomado igual a 1.

§ 155.—Manómetros de aire libre.—Los manómetros son aparatos que se emplean para medir presiones.

El más simple de ellos es el manómetro de aire libre, que consta de un tubo en U con mercurio u otro líquido (figura 339). Su funcionamiento se basa en el teorema general de la hidrostática. Si la presión p da lugar a un desnivel h entre ambas ramas, debe tenerse, llamando H a la presión atmosférica y ρ al peso específico del líquido.

$$p = H + h_{\rho} \text{ [fig. 339 a]}$$
 [4]

El desnivel h mide, pues, en altura del líquido empleado,

The state of the s

Fig. 339.—Manómetros de aire libre.

el exceso de la presión del recipiente conectado al manómetro, sobre la presión atmosférica.

Si el líquido es mercurio, para un desnivel h = 76 cm la presión es: p = H + 76 cm, o sea, prácticamente, 2 atmósferas. La rama abiera del tubo de Mariotte constituye un manómetro de este tipo.

Si el nivel del líquido en la rama abierta es menor que en la conectada al recipiente con gas (figura 339 b), la presión p' de éste, resulta ser:

$$\mathbf{p}' = \mathbf{H} - \mathbf{h}'_{\rho} \tag{5}$$

En este caso h' medirá en altura de líquido lo que le falta a p' para igualar a la presión atmosférica.

Usando mercurio, si el desnivel es h' = 22 cm, la presión en altus de este líquido resulta: 76 cm. — 22 cm. \pm 54 cm; lo que equivale s $54 \times 13,59 = 733,86$ gr/cm², y también a

$$\frac{54}{76}$$
 = 0,71 atmósfera.

Empleando líquidos diversos la misma presión se mide por altura diferentes que cumplen la relación general:

$$p = h_1 \rho_1 = h_2 \rho_2 = h_3 \rho_3$$

Una presión de una atmósfera, es equilibrada por una columna de mercurio de 76 cm y vale:

$$H = 76 \times 13,59 = 1033 \frac{gr}{cm^2}$$

La altura de agua equivalente es 1033 cm, aceptando que el per

específico del agua es 1 $\frac{\text{gr}}{\text{cm}^3}$, pues: 1033 cm \times 1 $\frac{\text{gr}}{\text{cm}^3}$ = 1033 $\frac{\text{gr}}{\text{cm}^2}$

Si se empleara ácido sulfúrico, de peso específico $\rho = 1,848 \frac{\text{gr}}{\text{cm}^3}$

la columna tendría una altura:

$$h = \frac{76 \times 13,59}{\rho} = 76 \times \frac{13,59}{1,848} = 558,8$$

Cambiando los líquidos pueden tenerse manómetros más o menos sensibles. Una variación de 76 cm para el mercurio, equivale a otra de 18,33 metros para el agua y a 5,624 m para el ácido sulfúrico, pero los tres valores miden la misma presión (una atmósfera).

§ 156.—Manómetros de aire comprimido.—Su funcionamiento se basa en la ley de Boyle-Mariotte. Si en la rama corta del tubo de Mariotte marcáramos las presiones que llevan el

> mercurio a cada nivel, tendríamos transformado el tubo en un manómetro de aire comprimido. La figura 340 muestra uno de estos aparatos graduado para presiones superiores a una atmósfera. No necesita tubos largos, como el manómetro de aire libre, para presiones elevadas. En cambio,

presenta el inconveniente de que las divisiones se van haciendo cada vez más próximas al crecer la presión, disminuyendo la posibilidad de apreciar pequeñas variaciones.

Figura 340. - Manómetro de aire comprimido.

§ 157.—Manómetro de Mac Leod para pequeñas presiones.-Se lo emplea para medir presiones de recipientes en que se ha hecho el vacío.

Consta esencialmente de un tubo AB cuyo volumen se conoce exactamente, que lleva en su parte superior las respectivas divisiones, y de otro tubo vertical CD que se comunica con el recipiente R cuya presión p se busca. (Figura 341).

Por su parte inferior ambos tubos comunican con otro flexible ligado a un recipiente con

mercurio. Levantando este último, el mercurio llega al enrase B, encerrando en el tubo AB un volumen V, que está a la presión p buscada.

Elevando más el recipiente M, este gas encerrado reduce su volumen al valor v, marcado por el nivel

Ni en el tubo AB.

Fig. 341. — Manómetro de Mc. Leod para pequeñas presiones.

El nivel del mercurio llega entonces a N2 en el tubo BC; si h es la

diferencia entre los niveles N₁ N₂, se tiene de acuerdo a la ley de Boyle-Mariotte:

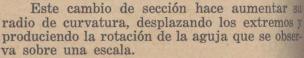
Fig. 342.—Manómetro metálico de Bourdon.

$$p V = (p + h) v_1$$

de donde:

$$p = h \frac{v_1}{V - v_1}$$
 [6

Siendo v, muy pequeño, comparado con V (por ejemplo un milésimo), se puede expresar con suficiente aproximación:


$$p = h \frac{v_1}{V}$$
 [7

La graduación del tubo AB da directamente

la relación
$$\frac{v_1}{V}$$

§ 158.—Otros manómetros.—1.—El manómetro metálico de Bourdon, representado en la figura 342, consta de un tubo de sección elíptica, al que la presión tiende a ensanchar dándole

sección circular.

Se gradúan por comparación con un manómetro de mercurio.

Estos manómetros son corrientemente empleados en las calderas de máquinas a vapor, recipientes de compresores y en numerosos instrumentos de aplicación práctica.

Fig. 343.—Barómetro truncado. (Manómetro para presiones bajas).

2.—El barómetro truncado es un manometro usado para medir pequeñas presiones.

Un tubo en u con su rama cerrada llena de mercurio, de unos 20 cm de altura, colocado bajo una campana en que se hace el vacío, permite medir presiones del orden del mm de mercurio.

El desnivel mide la presión ya que en la ca-

mara barométrica la suponemos nula.

Comienza a marcar cuando la presión es inferior a la altura del tubo.

§ 159.—Bombas hidráulicas a émbolo.—Las bombas son aparatos destinados a elevar líquidos. Las más antiguas, idea-

das para extraer agua de las napas subterráneas, son las de émbolo, que, según la colocación del cuerpo de bomba con respecto al nivel del líquido a elevar, se clasifican en aspirantes, impelentes y aspirantes impelentes.

1. Bomba aspirante.—Está represen-

tada en esquema en la figura 344.

El pistón MN con una válvula C que se abre de abajo hacia arriba, se mueve en el interior de un cilindro metálico, haciendo variar periódicamente el volumen de la parte MNPQ por su ascenso y des-

La base del cilindro tiene una válvula B que se abre también de abajo hacia arriba, y que obtura la comunicación con el tubo de aspiración AB que llega hasta el nivel del agua a elevar.

El funcionamiento se explica en base a la ley de Boyle-Mariotte, y a la acción de la presión atmosférica que actúa sobre la superficie del agua.

Imaginemos inicialmente el pistón MN

en el fondo PQ del cilindro y supongamos que se desplace hacia arriba. El volumen MNPQ comprendido entre el pistón y el

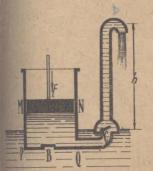
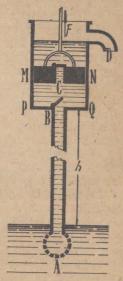


Fig. 345.—Bomba impelente.


Fig. 344.—Bomba asnirante. fondo del cilindro aumenta, y, en su interior la presión se hace menor que la atmosférica, dando lugar a que se levante la válvula B, y deje pasar, primero el aire contenido en AB, y después al líquido que sube empujado por la presión de la at-

La altura máxima a que se puede elevar el agua es teóricamente de 10.33 metros (altura equivalente a una atmósfera), y prácticamente de alrededor de 8 metros, pues la imperfección de los ajustes y las resistencias del agua al movimiento ale-

mósfera que actúa en A.

jan la situación real de la teórica.

2. Bomba impelente.—En este tipo de bomba el cilindro está dentro del agua y tiene en su parte inferior la válvula

B que permite la entrada del líquido abriéndose de abajo hacia arriba (fig. 345) cuando se levanta el émbolo o pistón MN.

Este émbolo, que es macizo, empuja al agua contenida

en el cilindro haciéndola subir por el tubo CD.

Una válvula C impide que el agua vuelva al cilindro des-

pués de pasar por ella.

Con esta bomba se puede elevar el agua a más de 10.33

metros, limitándose su altura de bombeo por el valor de la fuerza aplicada F, el cierre de las válvulas, el ajuste del pistón y la resistencia de los materiales que la forman.

Si h es la altura a que se eleva el líquido, ρ su peso específico y S la sección del émbolo, la fuerza F de

equilibrio es:

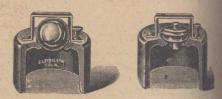


Fig. 346.-Modelos de válvulas de bombas

 $F = h \cdot \rho \cdot S$

Fol

El ajuste del émbolo contra las paredes del cilindro se consigue mediante aros de cuero

Las válvulas más usadas son de los tipos que indica la figura 346.

3.Bomba aspirante-impelerte.—Resulta de la combinación de los dos tipos anteriores; la figura 347 la representa en esquema.

Por el tubo de aspiración AB sube el agua empujada por la presión atmosférica cuando se levanta el émbolo MN; al bajar éste el agua contenida en el cilindro es impulsada por el tubo CD hacia arriba.

4. Cámara de aire - Bomba de incendio.—En los tres modolos de bombas mencionados la salida del líquido es discontinua con la bomba aspirante sale agua cuando sube el émbolo y en la impelentes cuando baja.

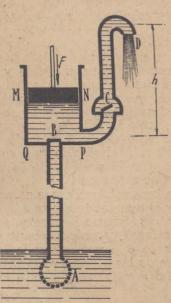


Fig. 347.—Bomba aspirante-impelente.

Para conseguir una salida continua se coloca en el tubo de pulsión de estas últimas, un recipiente cerrado, con aire. El gua impulsada por el émbolo penetra en ese recipiente y en

parte comprime el aire, al cesar la resión del émbolo el aire comprimido sigue por un tiempo empuando al líquido por el tubo de sa-

Cuando cesa esta acción del aire vuelve el émbolo a empujar y así sucesivamente, teniéndose una salida sin interrupción. Se aplica este dispositivo en la bomba de incendio. (fig. 348).

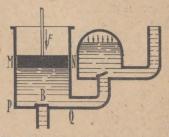
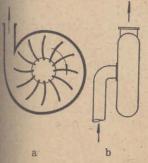


Fig. 348.—Bomba de incendio.

Para tener mayor regularidad a la salida, dos bombas aspirantes-impelentes actúan alternafivamente, manejadas por brazos de una misma palanca y envian el agua a la cámara de aire.

§ 160.—Bombas centrífugas.—Tienen en la actualidad


mucha aplicación las bombas centrífugas. Se caracterizan por poseer un sistema de paletas que, animadas de rápido movimiento de rotación, arrastran al líquido imprimiéndole una velocidad tangencial elevada.

El líquido fluye del centro hacia la periferia del cuerpo de bomba por efecto de la fuerza centrífuga, y allí sale en dirección tangencial por el tubo de impulsión. (fig. 349 a y b).

La figura 349 c muestra un equipo

de bomba accionada por un motor eléctrico.

La altura que alcanza el líquido depende de la velocidad de rotación y de la sección y forma de las cañerías. Se utilizan corrientemente velocidades rotación de 1500

SALIDA C

Fig. 349 a, b, c.—Esquema y bomba centrifuga.

a 3000 revoluciones por minuto, y se obtienen alcances en altura hasta 45 metros con caudales de 8000 litros por hora.

Se entiende que la potencia del motor tendrá que ser suficiente para producir este aumento de energía potencial de la masa líquida.

§ 161.—Sifón.—Es un instrumento formado por un tub

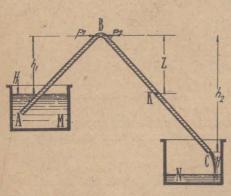


Fig. 350.—Sifón para transvasar liquidos.

acodado con dos rama desiguales, que sirve par transvasar líquidos (figu ra 350).

Colocada la rama corta AB en un vaso M y llen el sifón de líquido, éste co mienza a derramarse por C en el vaso N.

El movimiento del líqui do termina cuando su nive en M llega al extremo de del sifón. Entonces entre el aire y el sifón se des carga.

Para cargar o cebar e

sifón hay que aspirar el líquido por el extremo C, usándose mo delos especiales para líquidos tóxicos o cáusticos.

La explicación del funcionamiento se hace en base al teo rema general de la hidrostática y la acción de la presión atmos férica.

En la sección que pasa por B actúan dos presiones p₁ de izquierda a derecha y p₂ de derecha a izquierda.

Sus valores son:

$$p_1 = H - h_1 \cdot \rho$$

 $p_2 = H - h_2 \cdot \rho$

Como $h_2 > h_1$, se comprende que $p_1 > p_2$. Siendo diferentes las presiones, no hay equilibrio, marchando el líquido de B hacia C para derramarse en el vaso N La diferencia de presiones es:

$$p_1 - p_2 = [h_2 - h_1] \rho$$

El razonamiento puede repetirse para un punto cualquiera tal com el K, cuyo desnivel con B es z.

La presión de arriba hacia abajo es:

$$p_i' = H - h_i \rho + z \rho$$

y la de abajo hacia arriba:

$$p_2' = H - (h_2 - z) \rho = H - h_2 \rho + z \rho$$

Restando se tiene:

$$p_1' - p_2' = (h_2 - h_1) \rho$$
 [9]

que es el mismo valor de p, - p2.

En cualquier sección del sifón, hay una diferencia de presión cons-

ante que hace marchar el líquido y cuyo valor es el indicado.

El sifón puede funcionar aunque sobre los líquidos no actúe la presión atmosférica H; reemplazando a ésta por una presión cualquiera p, se llega al mismo valor para la diferencia de las presiones en una sección:

$$p_1 - p_2 = (h_2 - h_1) \rho$$

Parecería lógico aceptar que el sifón funcionara aunque la presión

p fuese nula, es decir, en el vacío.

Pero, en realidad, haciéndolo funcionar bajo la campana de una máquina neumática (ver § 162) llega un momento en que la columna se interrumpe, descargándose el sifón cuando entra en ebullición el líquido, por ser su tensión de vapor igual a la presión que soporta. La condición puede expresarse así:

§ 162.—Bombas neumáticas o bombas de vacío.—Son apatos destinados a producir disminuciones de presión (vacío), y en principio son bombas que aspiran los gases encerrados en recipientes.

En la ciencia se aprecia el grado de vacío por la presión final obtenida, que en la actualidad llega a ser del orden de

0,0000001 mm de Hg (10-7 mm).

En la técnica se suele expresar por la diferencia con la presión exterior; así, por ejemplo, un vacío de 750 mm significa una presión final de 10 mm de Hg.

Existen distintos tipos de bomba o máquinas neumáticas

con las cuales se obtienen los siguientes vacíos finales:

Trompa de agua Bombas a émbolo manejadas	hasta	10	mm	(101)
a mano	"	1	"	(10°)
rométrico) Bombas de émbolo con motor		0,1 0,01	"	(10^{-1}) (10^{-2})
Bombas rotativas de 1 cuerpo	"	0,002		2×10^{-3}
Bombas rotativas de 2 cuerpos Bombas rotativas moleculares	"	0,000 01 0,000 01	"	(10^{-5}) (10^{-5})
Bombas de difusión de vapor de mercurio	A	0,000 001		(10-6)
Bombas de difusión de aceite	"	0,000 000 3		3×10^{-7}

§ 163.—Trompa de agua.—Se obtiene una disminución de presión por el arrastre del aire que produ-

presion por el arrastre del aire que prodice un rápido chorro de agua (fig. 351).

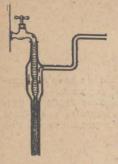


Fig. 351.—Trompa de agua.

El vacío obtenido depende de la velocidad de salida del agua, y, por lo tanto, de la presión en la cañería. La teoría se desarrolla en base al teorema de Bernouilli (§ 136), Se utiliza esta bomba en aquellas aplicaciones en que no es necesario un vacío muy elevado.

§ 164,—Máquina neumática a émbolo.

—Consta esencialmente de un cilindro en cuyo interior se mueve un pistón o émbolo que extrae el aire del recipiente en que se desea hacer el vacío. En los modelos corrientes de laboratorio se dispone de una platina

o placa plana de vidrio esmerilado, sobre la cual se apoya una campana de borde bien plano, también esmerilado, que se ajus-

ta con grasas especiales sobre la platina

El émbolo debe desplazarse dentro del cilindro, sin permitir filtraciones de aire, es decir, con un ajuste perfecto. En cilindros de vidrio se utilizan aros de cuero aceitado y en cilindros de metal con émbolos también de metal una capa de aceite constituye un cierre adecuado.

La figura 352 muestra un esquema de máquina neumática a émbolo.

Se trata de extraer el aire del recipiente R cuyo volumen es V, incluído el del tubo de comunicación. B y C son válvulas colocadas, respectivamente, en el cilindro y en el émbolo; por la primera llega el aire al cuerpo de bomba y por la segunda es expulsado al exterior.

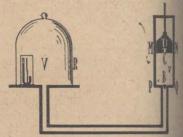


Fig. 352.—Esquema de máquina neumática a émbolo.

El funcionamiento se comprende fácilmente como aplica-

ción de la ley de Boyle-Mariotte.

Al subir el émbolo el volumen MNPQ aumenta, disminuyendo entonces la presión, que al llegar a ser inferior a la del gas R provoca la apertura de la válvula B. Continuando el movimiento ascendente del émbolo disminuye la presión en todo el volumen formado por el recipiente y el cilindro.

Al comenzar el descenso, la válvula B se cierra, no modificándose la presión en R, mientras aumenta en el cilindo

Cuando en éste la presión supera a la exterior, se abre la válvua C y el aire es expulsado. La repetición de este proceso provoca a disminución progresiva de la presión en R. Su valor se puede medir con un barómetro truncado (§ 158 [2]) colocado dentro de la campana o en una campana auxiliar conectada a R.

§ 165.—Cálculo de la presión final.—Sea p_o la presión inicial, V el volumen del recipiente R, y v el volumen barrido por el émbolo. Imaginemos al émbolo en la parte inferior de su recorrido; tenemos así un volumen de gas V a la presión p_o . Levantado hasta el final de su carrera, la misma masa de gas ocupa el volumen V+v, habiendo disminuído la presión al valor p_1 . Aplicando la ley de Boyle-Mariotte, se verifica:

$$p_0 V = p_1 [V + v]$$
 [10]

de donde deducimos:

$$p_1 = \frac{V}{V + v} p_0$$
 [11]

Al bajar nuevamente el émbolo volvemos a la posición inicial con un volumen de gas V a la presión p_1 . Levantando nuevamente el émbolo tendremos presión p_2 y volumen V+v, en forma tal que:

$$p_1 V = p_2 (V + v)$$

luego:

$$p_2 = \frac{V}{V + v} p_1$$
 [12]

Se observa que cada golpe de émbolo reduce la presión en la relación $\frac{V}{V+v}$. Sustituyendo en [12] el valor de p_1 dado por la [11]

$$p_2 = \frac{V}{V + v}, \frac{V}{V + v}, p_0 = \left(\frac{V}{V + v}\right)^2 p_0$$
 [13]

Llegaremos así, para n golpes de émbolo, a la expresión

$$p_n = \left(\frac{V}{V+V}\right)^n. p_0$$

141

Esta fórmula nos dice que, teóricamente, la presión puede reducirse a un valor tan pequeño como se quiera para un número suficientemente grande de golpes de émbolo.

Así por ejemplo: si $V=10~\rm dm^3~y~v=0.5~\rm dm^3$, después de 10 golpes de émbolo la presión inicial de 760 mm de Hg se reduciría a:

$$P_{10} = \left(\frac{10}{10.5}\right)^{10}760 = 466 \text{ mm}$$

y para 100 golpes de émbolo la presión final sería:

$$p_{100} = \left(\frac{10}{10.5}\right)^{100} 760 = 5.8 \text{ mm}$$

En la práctica, las filtraciones de aire, imposibles de evitar en absoluto, impiden obtener los resultados que da el cálculo.

Además, no es posible llegar a una presión inferior a cierto valor límite p₂, a causa del *espacio nocivo*. Llámase así al volumen que queda entre la cara inferior del émbolo y la base del cilindro, cuando aquél está en la parte más baja de su recorrido. Razones constructivas impiden reducirlo a cero adaptando exactamente ambas superficies.

Sin embargo, en la industria se utilizan bombas a émbolo accionadas por motor, cuya eficacia es bastante mayor a la de

los tipos corrientes de laboratorio.

Llamando ϵ al espacio nocivo, puede establecerse que la presión límite p_l se obtiene cuando el volumen v de aire encerrado a dicha presión en todo el cilindro, reducido al volumen ϵ , sólo alcanza una presión igual a la exterior p_0 . En este caso la válvula C no se abre y el pistón sube y baja sin extraer más aire del recipiente. El valor de p_l se calcula aplicando la ley de Boyle-Mariotte:

$$p_l \ v = p_0 \ \epsilon$$

$$p_l = p_0 \frac{\epsilon}{v}$$
[15]

Puede reducirse el efecto del espacio nocivo poniendo dos cilindros en serie, de modo que, el primero aspire el aire que sale del segundo, y éste

el del recipiente R. [En este caso: p
$$_l=\mathrm{p}_\circ\, imes\,\left(rac{\epsilon}{\mathrm{v}}
ight)^2
ight]$$

Son comunes las máquinas neumáticas con dos cuerpos de bomba que una llave especial ("robinete de Babinet") permite conectarlos, sea directamente al recipiente R, sea en serie, para obtener un vacío más completo.

§ 166 Bomba de mercurio. — Esta bomba sólo tiene

actualmente valor histórico. El principio de funcionamiento se comprende fácilmente observando el esquema de la fig. 353. Al bajar el recipiente de la derecha desciende el nivel del mercurio en el bulbo A, produciendo el vacío de la cámara barométrica. Al ponerlo en comunicación con el recipiente en el cual se desea hacer el vacío, se obtiene una disminución de presión. Levantando nuevamente el recipiente de la derecha se desaloja el gas de A por medio de la llave de tres vías M, a través del tubo e. Repitiendo la operación muchas veces se llega a un vacío apreciable, aunque el método es largo y molesto. En esta bomba el mercurio reemplaza al pistón de las bombas de émbolo.

§ 167.—Bomba rotativa.—En la actualidad se utilizan muy frecuentemente las bombas neumáticas rotativas, que funcionan accionadas por un motor eléctrico y se encuentran colocadas dentro de una caja con aceite

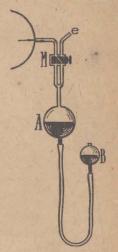


Fig. 353.— Bomba de mercurio.

que sirve a la vez como lubricante y asegura el cierre perfecto de las juntas. En la figura 354 está representado un equipo com-

E, LEYBOLD'S, NACHFA G, COELN RH.

Fig. 354.—Bomba rotativa.

pleto, en que se ve el motor, la caja de la bomba y una platina con campana de vacío adaptada al tubo de aspiración, dispuesto para la comprobación del principio de Arquímedes.

La figura 355 muestra dos cortes de la bomba, uno trasversal y otro longitudinal.

El cuerpo de bomba es cilíndrico y dentro de él gira excéntricamente otro cilindro más pequeño con una generatriz en contacto con el anterior. Dos paletas colocadas en un corte diametral del cilindro giratorio son oprimi-

das por resortes contra las paredes del cuerpo de bomba de manera que lo dividen en dos cámaras a y b.

Al girar en el sentido que indica la flecha aumenta el volumen de la cámara a comunicada directamente con el tubo de

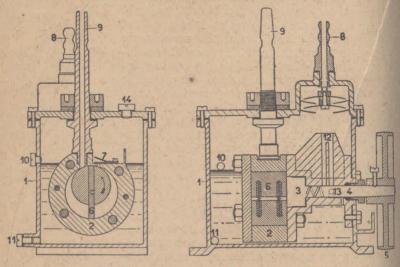


Fig. 355.—Cortes de una bomba rotativa.

aspiración (A) y disminuye el de la cámara (b), donde aumenta la presión del gas que es expulsado a través de la válvula

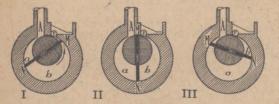
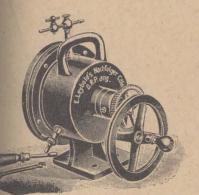


Fig. 356.—Esquema de funcionamiento de una bomba rotativa.

(v) (fig. 356 - I y II).

Continuando la rotación, constantemente está comunicada con el tubo de aspiración la cámara que aumenta de volumen (fig. 356

III).


En algunos casos

se emplean bombas en que la válvula v está comunicada, con un segundo cuerpo de bomba idéntico. Se mejora así notablemente el vacío obtenido.

§ 168.—Bombas de alto vacío.—Son bombas de alto vacío, las que permiten alcanzar presiones finales comprendidas entre el milésimo y el diez millonésimo de milímetro de mercurio (10⁻³ a 10⁻⁷ mm). Estos vacíos tan elevados se necesitan, no sólo para trabajos en los laboratorios de investigación, sino también en algunas industrias, como, por ejemplo, en la fabri-

mión de lámparas para radiocomunicaciones y tubos para ra-

Estas bombas no funcionan sin el auxilio de otra bomba

Rg. 357.—Bomba rotativa a mercurio, de Gaede, para vacio elevado.

auxiliar que produce un vacío que llamamos preliminar.

Podemos mencionar como más importantes:

- a) Bomba rotativa a mercurio, de Gaede, hoy ya poco usada (fig. 357).
- b) Bomba rotativa molecular de Gaede. Su funcionamiento se basa en el arrastre de moléculas producido por un rotor que gira a muy alta velocidad (hasta 12000 revoluciones por minuto). Este rotor presenta ranuras que

mmentan el efecto de aspiración. Un nuevo modelo, modificato por Siegbahn, lleva las ranuras en la parte fija y funciona 6000 revoluciones por minuto.

El principio de funcionamiento se entiende con el esque-

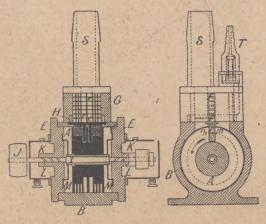


Fig. 358.—Bomba rotativa molecular de Gaede, para alto vacio.

na de la figura 359. El vacío que se obtiene depende del vacío reliminar y de la velocidad de rotación. Así, por ejemplo: para

12000 rev. p. min. y vacío preliminar 0,02 mm de Hg se obtiene una presión final de 3×10^{-7} mm.

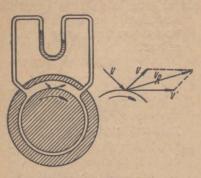


Fig. 359.—Principio de funcionamiento de la bomba rotativa molecular.

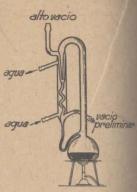
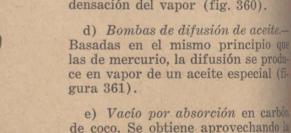



Fig. 360.—Bomba de diffisión de vapor de mercurio.

c) Bombas a vapor de mercurio a difusión, de Gaede, y a condensación, de Langmuir. En ellas el arrastre del gas se produce por un chorro de vapor de mercurio en un caso por difusión del gas dentro del vapor y en otro por la condensación del vapor (fig. 360).

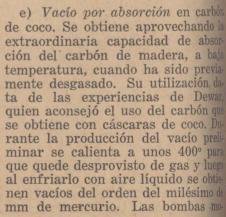


Fig. 361.—Bomba a difusión de aceite.

mulares y de difusión han desalojado el uso de este proce-

§ 169.—Bombas de compresión.—Una máquina análoga la neumática, pero con las válvulas que se abren en sentido

opuesto, sirve para aumentar la presión, constituyendo una bomba de compresión.

Las bombas rotativas expulsan aire por el tubo de salida (fig. 363) y en algunos modelos se puede utilizar este aire para diversas aplicaciones.

El modelo de bomba de la figura 362 sirve para hacer vacío y compresión. Al levantar el émbolo la válvula B se abre aspirando el aire; al bajarlo se cierra B y se abre C, saliendo el aire comprimido por S.

Se puede así comprimir aire en un recipiente; tal cosa sucede cuando se

infla un neumático de bicicleta o de automóvil.

Acoplando a una bomba de tipo análogo un motor elécrico se tiene un compresor con el que se realizan numerosas micaciones técnicas.

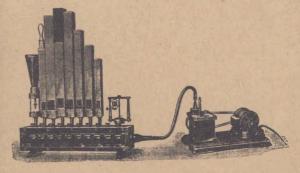
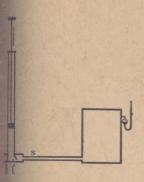
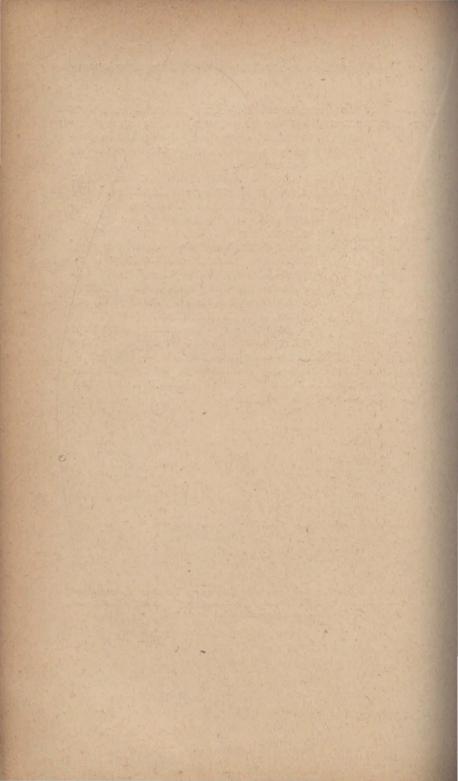




Fig. 363.—Las bombas rotativas de vacío sirven como bombas de compresión utilizando el aire de escape. En la figura aparece una de ellas aplicada al funcionamiento de tubos sonoros.

Pig. 362.—Bomba de compresión.

CAPÍTULO XIII

DINÁMICA DE GASES - RESISTENCIA AL MOVIMIENTO EN LOS FLÚIDOS (1)

§ 170.—Teorema general de la hidrodinámica aplicado a los gases.—En el § 135 se ha estudiado el teorema general de la hidrodinámica aplicado a los líquidos perfectos.

En su demostración se supuso la incompresibilidad del líquido, lo cual implica densidad constante, mientras no cambie

la temperatura.

En los gases, se demuestra también el teorema general de la hidrodinámica suponiendo una masa de gas en movimiento estacionario; pero no es posible admitir la incompresibilidad, pues hemos visto que la densidad es función de la presión

(§ 153).

La ecuación de continuidad es la ecuación por la cual se establece que la masa de flúido no varía, es decir, que la masa que atraviesa una sección de un filete es la misma que atraviesa cualquier otra sección del mismo filete y durante el mismo intervalo de tiempo. Esta ecuación, que en los líquidos adquiere forma sencilla, en los gases es bastante más compleja. Además, en el teorema general figura para los gases un término en que se vincula la variación de presión con la variación de volumen.

Sólo en el caso de suponer una circulación de gas a *volumen constante* podrá aplicarse la expresión del teorema de Bernouilli (§ 135):

$$\frac{p}{\rho} + \frac{v^2}{2 g} + h = constante$$
 [1]

en la cual es p la presión hidrostática, ρ el peso específico, v la velocidad y h la altura del punto considerado en la masa flúida, contada a partir de un plano horizontal de comparación.

Una experiencia curiosa que podemos explicar aplicando

este teorema es la siguiente:

⁽¹⁾ Los temas tratados en este capítulo no figuran en los programas oficiales de enseñanza media.

En el aparato de la figura 364, soplando fuertemente por

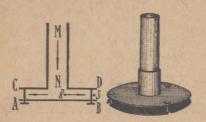


Fig. 364.—Paradoja aerodinámica de vacio con el aparato de Clement-Desormes,

el tubo MN, se observa que, contrariamente a lo que pudiera creerse, la placa AB móvil sube hasta tocar la CD.

La explicación es sencilla aceptando aplicable el teorema de Bernouilli. En efecto como la sección de los filetes flúidos crece hacia la periferia, la velocidad del mismo disminuye, de acuerdo a la ecuación o ley de continuidad, teniéndose que la velocidad en el punto R es mayor que en el S.

En el borde la presión hidrostática es igual a la presión exterior po que actúa sobre la cara inferior de AB. Aplicando el teorema de Bernouilli a dos puntos tales como R y S:

$$\frac{p_{R}}{\rho} + \frac{v_{R}^{2}}{2g} + h_{R} = \frac{p_{S}}{\rho} + \frac{v_{S}^{2}}{2g} + h_{S}$$

como h_R = h_S y p_S = p_o resulta:

$$\frac{p_{R}}{\rho} + \frac{v_{R}^{2}}{2g} = \frac{p_{o}}{\rho} + \frac{v_{S}^{2}}{2g}$$

y como, además, dijimos que $v_{\scriptscriptstyle R}>v_{\scriptscriptstyle S}$, tendrá que ser:

$$p_R < p_o$$

quiere decir que la presión que actúa en la cara superior de la

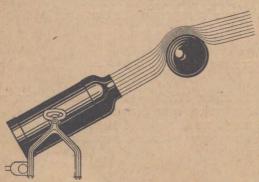


Fig. 365.—Efecto de la presión aerodinámica.

placa AB es menor que la que actúa sobre la cara inferior. Habrá una fuerza resultante dirigida hacia arriba; cuando supere al peso, la placa se elevará.

Un razonamiento análogo explica que la pequeña esfera de celuloide de la figura 365 se sostenga como adherida a la

priente emitida por el tubo, pues en el aire que está en contacto con ella en la parte superior la presión hidrostática es menor que en el de la parte inferior, pues allí la velocidad y, por lo tanto, el término $\frac{v^2}{2g}$, son mayores.

§ 171.—Viscosidad en gases.—En los gases reales se produce, como en los líquidos reales, una resistencia al deslizamiento en la superficie de separación de dos capas animadas de distinta velocidad.

En un tubo, por cuyo interior circula gas, la velocidad no es la misma en todos los puntos de una sección transversal, pues, en contacto con las paredes, la velocidad es nula, y aumenta hacia el eje del conducto.

Fig. 366.—Efecto de la viscosidad del gas en la distribución de velocidades.

Se define el coeficiente de viscosidad η en forma análoga al de los líquidos.

De las determinaciones experimentales, resulta que el coeficiente de viscosidad del aire a 0° es:

$$\eta = 0.000172 \ \frac{g}{cm \ seg}$$

es decir, unas 100 veces menor que el del agua a la misma temperatura (η agua = 0.01797 $\frac{g}{cm \ seg}$).

§ 172.—Resistencias al movimiento en los flúidos.—Cuando un sólido se desplaza en el interior de un flúido, aparecen fuerzas que se oponen al movimiento (resistencias). Estas resistencias son debidas a dos causas: la viscosidad y la reacción de inercia del flúido que el sólido desplaza en su movimiento.

La primera origina fuerzas que son, en cada punto, tangenciales, y la segunda, fuerzas normales a la superficie del sólido. Se las llama resistencia de rozamiento y resistencia de presión, respectivamente.

En el valor de la resistencia total de rozamiento influye fundamentalmente la superficie del cuerpo y no su forma. En la resistencia de presión influye, en cambio, la forma.

En los cuerpos que se desplazan en la superficie de los líquidos adquiere especial importancia la resistencia debida al conjunto de ondas que forma el cuerpo en su movimiento (caso de un navío).

En general, podemos decir que la velocidad es lo que de-

cide sobre el tipo de resistencia que adquiere más importancia.

Para muy pequeñas velocidades interesa casi exclusivamente la resistencia de rozamiento, que es proporcional a la velocidad y al coeficiente de viscosidad del flúido. Así, para una esfera de radio r, moviéndose con velocidad v en un flúido cuyo coeficiente de viscosidad es η, la resistencia es:

$$f = 6 \pi \eta r v$$
 (fórmula de Stokes) [5]

Si la velocidad crece, llega a adquirir fundamental impor-

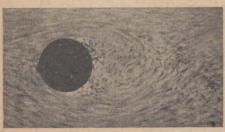


Fig. 367.—Lineas de corriente y torbellinos en el movimiento de una placa y un cilindro dentro de un flúido.

tancia la resistencia de presión. Entonces se forman torbellinos detrás del móvil, que dan por resultado un desequilibrio entre la fuerza que actúa en la cara de adelante y la que actúa en la cara de atrás del cuerpo (figura 367). En este caso la resistencia al movimiento resulta proporcional al cuadrado de la velocidad (Ley de Newton), prácticamente independiente de la viscosidad y proporcio-nal a la superficie que presenta el cuerpo normalmente a la dirección del movimiento:

$$F = kSv^2$$
 [6]

El coeficiente k, para el aire a presión normal y para velo-

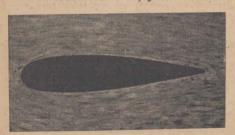


Fig. 368.—Perfil aerodinámico que reduce la formación de torbellinos y por lo tanto la resistencia al movimiento.

cidades comprendidas entre 2 y 25 $\frac{m}{seg}$, resulta aproximadamente:

$$k~=~0.079~\frac{Kgr~seg^2}{m^4}$$

Cuando la velocidad alcanza a ser próxima a la velocidad del sonido dentro del flúido, el fenómeno es mucho más complejo y la resistencia al movimiento crece.

Como para velocidades medias la resistencia aumenta por la formación de torbellinos, en los casos en que se desea reducir su valor al mínimo, se dan al móvil formas adecuadas (perfiles aerodinámicos).

En la fig. 368 se observa un perfil en esas condiciones.

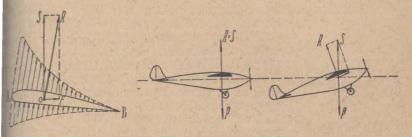


Fig. 369.—Distribución de presiones en el ala de un avión y fuerzas que actúan sobre él durante el vuelo. La sub-presión en la cara superior del ala da la mayor parte de la fuerza de sustentación.

El sentido conveniente de la marcha es el que corresponde al avance con la parte más ancha hacia adelante.

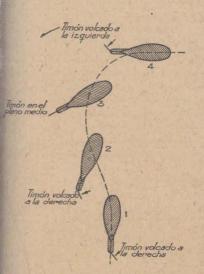


Fig. 370.—Funcionamiento del timón en un dirigible. La resistencia del aire tiene una resultante sobre el timón, que produce una rotación alrededor de un eje baricéntrico.

En los dirigibles modernos se adopta este perfil, que recuerda al de los peces.

En otros casos, se trata de aprovechar la resistencia al movimiento para obtener estabilidad.

En las alas de los aviones la fuerza de sustentación es consecuencia de la resistencia al movimiento en los flúidos. Pero en ese caso también se elige un perfil tal que no se formen remolinos que originarían fuerzas peligrosas.

El vuelo de un avión se explica del siguiente modo: la hélice gira velozmente en el aire y por el perfil de sus brazos actúa sobre ella una fuerza hacia adelante, que comunica al avión su velocidad. Las alas se encuentran entonces en movimiento dentro de la masa de aire y su forma es

tal que la resistencia del aire tiene una componente vertical hacia arriba (fig. 369) originada por una presión en la cara inferior y una depresión (aspiración o succión), en la cara superior.

El funcionamiento de los timones en todos los tipos de embarcación utiliza también la resistencia al movimiento en

los flúidos (fig. 370).

Como los efectos de la resistencia al movimiento dependen.

Fig. 371.-Molino de viento.

en todos los casos, de la velocidad relativa del sólido con respecto al flúido, se estudian experimentalmente desplazando a éste, con respecto al sólido, que está en reposo, y midiendo así las fuerzas que sobre él actúan. Tal es el caso del túnel aerodinámico, de gran aplicación en las fábricas de aviones. Así, se han obtenido también las fotografías reproducidas en las figuras 367 y 368.

El funcionamiento de los molinos de viento se explica por las fuerzas generadas en sus paletas por el aire en movimiento y otro tanto sucede con los anemómetros, aparatos destinados a medir la velocidad del viento, formados por cuatro paletas semiesféricas montadas sobre un eje cuyas rotaciones mi-

de un contador de vueltas.

§ 173.—Caída en el aire - Paracaídas -Sabemos que la caída de los cuerpos en el vacío se cumple con movimiento uniformemente acelerado.

En el aire, a la acción del peso se agrega la resistencia del aire, que en los cuerpos de dimensiones corrientes crece con el cuadrado de la velocidad. De tal manera, aplicando el principio de masa, podremos escribir:

$$ma = P - F = mg - kSv^2$$

siendo k un factor de proporcionalidad (fórm. [6]). La aceleración es entonces:

$$a = g - \frac{kS}{m} v^2$$

Llegará un momento en que la resistencia del aire se equilibra con el peso:

$$P = F = kSv^2$$
 [9]

a partir de ese instante la velocidad será constante y el momiento se hará uniforme.

Esa velocidad se llama velocidad crítica o velocidad límite, depende de la forma y peso del cuerpo que cae.

De la fórmula [9] se deduce:

$$v = \sqrt{\frac{P}{kS}}$$

Es clásica la experiencia que consiste en dejar caer varios erpos de distinto peso dentro de un tubo (tubo de Newton) ig. 138).

Se observa que, mientras en el aire cada uno cae con disnta velocidad, en el vacío todos caen simultáneamente.

El paracaídas tiene por objeto limitar la velocidad de caí-

en el aire a un valor que no resulte peligroso.

Fig. 372.—Dos instantes del descenso de un paracaidas.

niforme a partir del instante en

Está constituído por un casquete esférico de tela con una abertura pequeña en su parte superior, por donde pasa el aire.

El efecto de esta abertura es mantener al paracaídas con su eje vertical durante el descenso.

Aplicaciones: 1º Calcular la velocidad de caída en aire a 0º de una gota de aceite de 0.1 mm de diámetro y peso específico

$$\rho = 0.91 \; \frac{\mathrm{gr}}{\mathrm{cm}^3}$$

Resp. Se aplica la fórmula Stokes [5]. El movimiento es

$$P = f = 6\pi\eta r v.$$

lego la velocidad límite será:

$$v = \frac{P}{6 \pi n r}$$

olumen esfera =
$$\frac{4}{3}\pi$$
 r³ = 0.00052 mm³

$$P = 0.00000052 \text{ cm}^3 \times 0.91 \frac{\text{gr}}{\text{cm}^3} = 0.00000047 \text{ gr} = 0.00046 \text{ dina}$$

$$\eta = 0.000172 \frac{g}{\text{cm seg}}$$
 0.00046 dina

$$v = \frac{0.00046 \text{ dina}}{6 \pi \times 0.000172 \times 0.005 \frac{\text{g cm}}{\text{cm seg}}} = 28 \frac{\text{cm}}{\text{seg}}$$

2º) Un paracaidista se lanza desde un aeróstato siendo el peso total (peso propio + peso paracaídas) de 100 Kgr. La superficie normal del mismo es 50 m². Calcular la velocidad crítica. Se aplica, en este caso, la fórmula de Newton

$$F = k Sv^2$$

La velocidad crítica es [fórm. 10]:

$$v = \sqrt{\frac{P}{k S}} = \sqrt{\frac{100 \text{ Kgr}}{0,079 \times 50 \text{ Kgr seg}^2 \text{ m}^2}} = \sqrt{\frac{100}{0,079 \times 50}} \frac{m^2}{\text{seg}^2} = 5.04 \frac{m}{\text{seg}}.$$

CAPÍTULO XIV

LASTICIDAD EN LOS SÓLIDOS, LÍQUIDOS Y GASES (1)

§ 174.—Elasticidad de sólidos.—Los sólidos reales no son perpos rígidos, pues se deforman por la acción de fuerzas exeriores. Las deformaciones originan reacciones internas, llamadas fuerzas elásticas, que equilibran a las fuerzas aplicadas. Hemos utilizado esta propiedad al hablar de dinamómetros (§ 16), y se ha mencionado al estudiar el choque de cuerpos elásticos (§ 63). Nos referiremos a la elasticidad en los sólidos isótropos y homogéneos. Son homogéneos los cuerpos cuas propiedades son las mismas en todos sus puntos, y son isórropos cuando en cada punto las propiedades físicas son idénticas en todas las direcciones.

§ 175.—Elasticidad por tracción - Ley de Hooke.—Colocando una carga P en el extremo B de un alambre fijo en su otro extremo A se constata un alargamiento de A

Siendo l la longitud inicial y s el área de la sección normal del alambre, se comprueba que el alargamiento Δ l cumple, para cargas que no pasan de cierto límite, las siguientes leves:

- 1º Es proporcional a la carga P.
- 2º Es proporcional a la longitud l.
- 3° Es inversamente proporcional a la sección s.
- 4º Es proporcional a un coeficiente k, que depende de la sustancia de que está hecho el alambre.

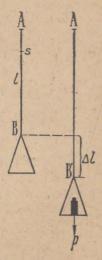


Fig. 373.—Elasticidad por tracción.

⁽¹⁾ Este capítulo se ocupa de temas que no figuran en los programas oficiales de enseñanza media.

Puede, pues, escribirse:

$$\Delta t = K - \frac{\mathbf{P}t}{s}$$

El coeficiente k, llamado coeficiente de elasticidad poi tracción, se suele expresar en la forma:

$$K = \frac{1}{E}$$

Siendo E el módulo de elasticidad por tracción (módulo de Young).

La fórmula [1] toma la forma:

$$\Delta l = \frac{Pl}{Es}$$

Si aumentamos la carga P, se llegará a un valor a partir del cual los alargamientos dejan de ser proporcionales a las cargas. Se ha pasado, pues, el límite-de proporcionalidad. Hasta este límite, podemos admitir con suficiente aproximación que, retirada la carga, el alambre recobra su longitud inicial.

De la fórmula [3] deducimos:

$$\frac{\mathbf{P}}{\mathbf{s}} = \frac{\mathbf{E} \,\Delta \,t}{l}$$

El cociente $\frac{P}{s}$ = N es la fuerza que actúa por unidad

de sección, y la llamaremos tensión.

La relación $\frac{\Delta l}{l} = \lambda$ es el alargamiento experimentado

por cada unidad de longitud, o sea la deformación. Luego, la fórmula [4] puede escribirse:

$$N = E_{\lambda}$$
 [5

que nos dice que: Las tensiones son proporcionales a las deformaciones (ley de Hooke).

Siendo λ un número abstracto, pues es el cociente de dos longitudes, la unidad en que se mide E será la misma en que se mide N. o sea:

$$[E] = \frac{Kgr}{cm^2} \circ \frac{Kgr}{mm^2} \circ \frac{dina}{cm^2}$$

Puede interpretarse E, en base de la fórmula [5], como a tensión que produce una deformación λ igual a uno, o sea

la tensión capaz de duplicar la longitud inicial del alambre. Debe tenerse en cuenta que en la realidad el alambre se rompe antes de alcanzar este alargamiento.

§ 176.—Límite de elasticidad Valores de E.—La ley de Hooke es válida también para un prisma o cilindro cargado en la dirección de su eje con una fuerza uniformemente distribuída sobre su sección transversal.

Con máquinas especiales se miden los alargamientos para cargas crecientes desde cero hasta la rotura.

En la figura 374 se reproduce in gráfico en que están representadas las tensiones en función de las deformaciones. Al principio, desde 0 hasta A, existe proporcionalidad, de modo que la representación gráfica es una recta. En esa zona se puede aplicar la ley de Hooke, y el módulo de elasticidad es una constante.

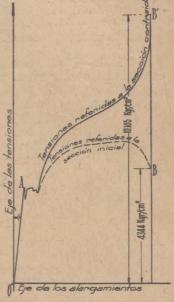


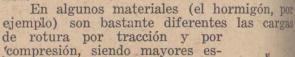
Fig. 374.—Representación gráfica del alargamiento en función de la carga, en una barra de acero.

Pasado el punto A, la barra o alambre se alarga más de lo que proporcionalmente correspondería a las tensiones aplicadas. Llegada la tensión a determinado valor, se produce la rotura (punto B).

Fig. 375.—Aspecto de una barra de acero después de cargada hasta la rotura por tracción.

Aparentemente, en la parte final de la curva, a mayores alargamientos han correspondido menores tensiones. En rigor debe tenerse en cuenta que la probeta se estrangula en

su parte media, disminuyendo la sección y, por lo tanto, allí la tensión ha aumentado (ver fig. 375), como indica la curva B'.


TABLA XII VALORES DE E

MATERIAL	E Kgr/cm ²	Límite de proporcionalidad Kgr/cm ²	Carga de rotura Kgr/cm ²
Hierro dulce	2.000.000	1300	3300 a 4000
Acero	2.200.000	2500 a 6000	5000 a 20.000
Acero de resortes.	2.200.000	8.500	hasta 17.000
Cobre	1.000.000		Printer and the second
Aluminio	700.000	480	1500
Plomo	50.000		125

§ 177.—Elasticidad por compresión.—Si sobre las bases del prisma o cilindro recto se aplican presiones normales diri-

gidas hacia el interior del mismo, decimos que se encuentra sometido a una compresión, y observamos que sufre un acortamiento.

Las leyes que se establecen experimentalmente son idénticas a las de la tracción, y se observa que para la mayoría de los metales, aleaciones y otras sustancias el valor del módulo de elasticidad por compresión es aproximadamente igual al módulo de elasticidad por tracción.

tas últimas.

Fig. 376.—Prisma sometido a compresión.

§ 178.—Contracción lateral.— Tanto en las experiencias de tracción como en las de compresión, se comprueba que el prisma (o alambre o cilindro) sometido a esos esfuerzos experimenta tam-

bién una deformación lateral.

En el caso de tracción se produce una contracción, en el caso de compresión se produce una dilatación lateral.

La contracción λ' por unidad de longitud, en una cualquiera de las dimensiones laterales, se calcula por una fórmula semejante a la [5].

$$\lambda' = \frac{N}{mE}$$
 [6]

Fig. 377.— Contracción lateral en la tracción.

Siendo N la tensión longitudinal, E el mismo módulo de elasticidad, y m el módulo de Poisson.

Este módulo es mayor que 2, y en el acero está comprenido entre 3 y 4.

Así por ejemplo: si una varilla cilíndrica de acero está cargada en midiciones tales que se alarga 1 mm por cada metro de longitud (h = 0.001); experimentará una contracción lateral tal que su diámetro

sminuye 0,3 micrones por cada milímetro
$$(\lambda' = \frac{0.001}{3})$$
.

Se comprende fácilmente que el resultado es siempre para a tracción un aumento de volumen y para la compresión una isminución de volumen.

§ 179.—Compresión uniforme.—Se obtiene cuando el sólilo está sometido a presiones normales a su superficie e iguales m toda su extensión.

En este caso se produce una variación de volumen, de tal

le la deformación.

Siendo V el volumen inicial, y Δ V la variación de volumen, amaremos compresión a la relación:

$$\phi = -\frac{\Delta V}{V}$$

Con signo negativo, pues existe compresión para Δ V < 0. Si p es la presión que ha producido esa variación de volumen, se demuestra, aplicando la ley de Hooke a las deformaciones de las aristas en un cubo sometido a este estado de carga, que:

$$p=\chi\,\phi$$

Siendo χ el módulo de compresión, que está vinculado al de elasticidad E y al módulo de Poisson con la fórmula:

$$\chi = \frac{m E}{3m-2}$$

Resultan para casi todos los sólidos valores inferiores a los que se obtienen para los líquidos (§ 184).

§ 180. Deslizamiento. — Imaginemos un paralelepípedo ABCDEIGH (fig. 378) y sobre dos caras opuestas ABIE y CDGH aplicadas fuerzas F y — F uniformemente repartidas en dirección tangencial a las mismas. Se producirá una deformación tal, que el volumen se mantiene constante, pero se modifican los ángulos diedros, cuyas aristas son perpendiculares al plano determinado por F y — F.

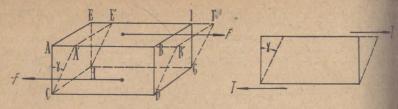


Fig. 378.—Deslizamiento.

Decimos que se ha producido un deslizamiento que medremos por el ángulo γ.

Si llamamos:

$$T = \frac{F}{SupABFE}$$

a la tensión tangencial que produce el deslizamiento, se verificaque:

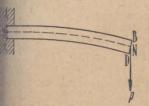
$$T = G \cdot \gamma$$

fórmula análoga a [5], pues indica que la tensión es proporcional a la deformación. El coeficiente G se llama m'odulo de elasticidad por deslizamiento, o m'odulo de rigidez, y es contante para cada material.

Su valor es del orden de magnitud 0,4 E.

Por ejemplo:

Fig. 379.—Casos de flexión.


hierro dulce . 770.000 Kgr/cm³ acero . . . 850.000 ,, aluminio . . . 260.000 ..

§ 181.—Flexión.—Una varilla prismática fija en un extremo (empotrada) y con una carga P en el otro, o apoyada o empotrada en su extremos, y cargada en su punta medio, está sometida a un esfuerzo de flexión (fig. 379 a, b, c).

En el caso más simple suponemes que la fuerza P es normal al eje de la barra.

Al estudiar la teoría de esta expriencia se supone que las fibras tales como la AB se alargan, y las de la

arte inferior, como CD, se acortan, manteniendo su lonitud las fibras como MN que forman la línea neutra (fig. 380).

lg. 380.—Eje neutro en la flexión.

En los tres casos de la fig. 379 se demuestra que la flecha f, o deformación máxima, es proporcional a la carga P, e inversamente proporcional al módulo de elasticidad E y al momento de inercia I de la sección transversal, estando expresada por las fórmulas:

Caso a)
$$f = \frac{1}{3} \frac{Pl^3}{EI}$$

b) $f = \frac{1}{48} \frac{Pl^3}{EI}$ [9]
c) $f = \frac{1}{192} \frac{Pl^3}{EI}$

El momento de inercia de la sección transversal se expreen cm⁴, y corresponde al momento de inercia de una figura ana cuya densidad superficial es igual a uno.

Ejemplo:

Sección circular:
$$I = \frac{1}{2} \pi R^4$$

, rectangular:
$$I = \frac{bh^3}{12}$$

§ 182.—Torsión.—Consideremos un alambre una varilla cilíndricos de longitud l y radio r, on un extremo fijo. Si en el otro extremo apliamos una cupla contenida en un plano perpenicular al eje del cilindro, se producirá una presión del mismo, que medimos por el ángulo, que gira el extremo al cual se ha aplicado la upla (fig. 381).

Siendo:

$$M = F. 2 r$$

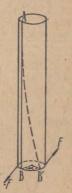


Fig. 381.— Cilindro sometido a torsión.

momento de la cupla aplicada, se verifica que:

Donde D es una constante que depende del material y de las dimensiones del cilindro.

Se demuestra que este valor D, llamado cupla directriz, está vinculado al módulo G de rigidez (§ 180) por la fórmula:

$$D = \frac{2}{\pi} \frac{1}{r^4} G$$
 [12]

En los resortes y péndulos de torsión se produce una deformación en este tipo.

§ 183.—Elasticidad de los flúidos.—En los líquidos y gases, de acuerdo con lo que hemos estudiado en los capítulos correspondientes, sólo podemos producir variaciones uniformes en la presión que actúa en toda la superficie que los limita. Tendremos entonces variaciones de presión que producen variaciones de volumen.

Si es Δ p el aumento de presión y Δ V la variación de volumen que experimenta un volumen V de flúido, llamaremos contracción al cociente:

$$\phi = -\frac{\Delta V}{V}$$

con signo negativo, pues la contracción es positiva, cuando Δ V es negativo. Es, pues, la variación de volumen experimentada por la unidad de volumen inicial.

Llamaremos, en general, módulo de compresibilidad al coe-

ficiente y que cumple la condición:

$$\Delta p = \chi \varphi$$

o sea:

$$\Delta p = -\chi \frac{\Delta V}{V}$$
 [14]

Se ve que este coeficiente tiene significado análogo a los de elasticidad y al de compresión definidos para los sólidos.

 \S 184.—Elasticidad de líquidos.—En los líquidos se sue expresar, en lugar de χ , su inverso llamado coeficiente de compresibilidad:

$$C = \frac{1}{\chi}$$

de modo que:

$$\Delta \ p = \frac{\phi}{C}$$

Ya se ha dicho que los líquidos son poco compresibles, lo cual significa que C es pequeño.

Por ejemplo:

0.0010	C = 0.000044 por cada -	Kgr
agua	C = 0.000044 por caua -	cm ²
éter	C = 0.00011	
mercurio	C = 0.000003	

Este coeficiente disminuye a medida que aumenta la presión. A $6.600~{\rm Kgr/cm^2}$ su valor para el agua es C=0.00003.

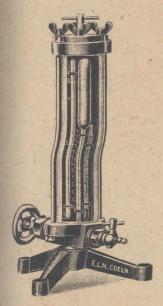


Fig. 382. — Piezómetro para compresibilidad de líquidos.

Se mide en aparatos llamados piezómetros, en que se ejerce presión con un émbolo movido a tornillo, y se observa la variación de volumen experimentada por el líquido contenido en un bulbo terminado por un capilar sumergido en mercurio. Las variaciones de volumen se miden en el capilar, y las de presión con un tubito que contiene aire, al cual se aplica la ley de Boyle, pues constituye un manómetro de aire comprimido.

Debe notarse que no se produce variación de volumen en el recipiente que contiene el líquido, pues el aumento de presión es interior y exterior, al estar el conjunto sumergido en agua.

§ 185.—Elasticidad en gases.— En la compresión de gases se obtendrá un valor diferente para el módulo de compresibilidad, según como se realice la compresión.

Si la temperatura se mantiene constante (isoterma), la compresión cumple la ley de Boyle-

Mariotte. Siendo p y V presión y volumen antes de la compresión, y p + Δ p ; V — Δ V después de la compresión, podemos escribir:

Efectuando operaciones:

$$pV = pV + V \cdot \Delta p - p \cdot \Delta V - \Delta p \cdot \Delta V$$

de donde resulta, despreciando el producto $\Delta\,p$. $\Delta\,V_{\text{\tiny A}}$ pues es muy pequeño comparado con los demás:

$$\Delta p = p \frac{\Delta V}{V}$$
 [16]

Comparando esta fórmula con la [14], se comprueba que en la compresión isotérmica de gases, el módulo de compresibilidad es igual, en cada instante, a la presión ($\chi = p$; t = constante).

Ej.: Si tenemos 100 dm³ de gas a presión de ε Kgr cm², y aumentamos

la presión en 0,1 Kgr/cm², experimenta una variación de volumen

$$\Delta V = \frac{V \cdot \Delta p}{p} = \frac{100 \times 0.1}{2} dm^3 = 5 dm^3$$

Otro caso interesante se produce cuando el gas está colocado en un recipiente con paredes tales que no puede recibir ni perder calor, en cuyo caso la compresión se llama adiabática.

En forma análoga a la anterior se demuestra que enton-

ces el módulo de compresibilidad es:

$$\chi = \kappa p \tag{17}$$

Siendo \varkappa una constante característica de cada gas, que estudiaremos en el capítulo de calor (§ 252) y cuyo valor es siempre mayor que uno; \varkappa para el aire es 1.41 y para el hidrógeno es 1.66.

CAPÍTULO XV

INTRODUCCIÓN A LA ACÚSTICA

Movimiento vibratorio - Sonido y sus características

§ 186.—Movimiento periódico y movimiento oscilatorio.—
1.—Se dice que un punto realiza un movimiento periódico cuando a intervalos iguales de tiempo vuelve a pasar por los mismos puntos, animado de las mismas velocidades. Tal es el caso de los puntos de un volante que gira con velocidad angular constante.

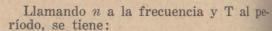
El tiempo T que tarda cada uno de ellos en cerrar su travectoria circular se llama período del movimiento.

Algunos movimientos periódicos se caracterizan por el hecho de que el punto móvil se desplaza sobre una trayectoria rectilínea o curvilínea, recorriéndola alternativamente en un sentido y en sentido contrario.

Tal es el caso del punto material de un péndulo simple (§ 83), que se mueve sobre un arco de circunferencia a uno y otro lado de la vertical de equilibrio; y también el de un punto A de una pesa P colgada de un resorte (figura 383), el cual, abandonado después de llevarlo hasta la posición A' comienza a moverse periódicamente entre A' y A", en línea recta, a uno y otro lado de A.

Este tipo de movimiento periódico constituye el movimiento oscilatorio alternativo, llamado también simplemente movimiento oscilatorio.

En cada instante, se llama elongación a la distancia del móvil a la posición de equilibrio. La máxima elongación recibe el nombre de amplitud de la oscilación. En el caso de la figura 383, AA' = AA" es la amplitud. El tiempo transcurrido entre dos pasos consecutivos del punto móvil por la misma posición, movién dose con la misma velocidad y en el mismo sentido, se llama período T del movimiento.


En el mismo ejemplo de la fig. 383, el intervalo entre dos pasos consecutivos del punto móvil por A' (donde se detiene), es un período. El movimiento efectuado al recorrer el trayecto A'A"

es una oscilación simple y su duración es

medio período.

El movimiento integrado por los recorridos A'A" + A"A', o viceversa, constituye una oscilación completa y su duración es el período T.

Se llama frecuencia de un movimiento oscilatorio al número de períodos contenidos en la unidad de tiempo.

$$n = \frac{1}{T}$$

La frecuencia es también el número de oscilaciones completas ejecutadas en la unidad de tiempo.

a) Si un móvil realiza un movimiento oscilatorio con período T=0.2 seg., la frecuencia es:

$$n = \frac{1}{0.2 \text{ seg}} = 5 \frac{1}{\text{seg}}$$

En cada segundo el móvil ejecuta 5 oscilaciones completas.

Fig. 383.—La pesa en el extremo del resor-

te, se mueve con movimiento oscilatorio armónico.

Fig. 384.—Vibraciones de una varilla fija en uno de sus extremos.

$$n = \frac{1}{24 \text{ horas}} = 0,0416 \frac{1}{\text{hora}}$$

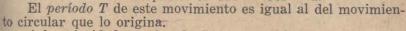
2.—Vibraciones.—Se obtienen fácilmente movimientos oscilatorios alternativos rápidos fijando una varilla metálica por uno de sus extremos (figura 384), y desplazando el otro. Al soltarlo, las fuerzas elásticas originan el movimiento oscilatorio.

Los puntos de una cuerda elástica tensa, fija en sus extremos y golpeada

suavemente, adquieren también movimientos oscilatorios de período muy corto.

Los movimientos oscilatorios de pequeño período, se llaman vibraciones, y su estudio adquiere especial importancia en la física.

§ 187.—Movimiento armónico simple o rectilíneo.—1. El más sencillo de estos movimientos es el movimiento rectilíneo armónico o movimiento armónico simple que, como se ha visto en el § 90, se obtiene proyectando un movimiento circular uni-


forme sobre uno de los diámetros de la circunferencia descripta por el punto móvil.

Sean P una posición del punto, a el radio de la circunferencia descripta, T el período del movimiento circular uniforme, y A'A" el diámetro elegido para proyectar el movimiento (fig. 385).

La perpendicular PQ trazada por P sobre A'A", determina la proyección Q del punto móvil en un instante dado.

Al desplazarse P sobre la circunferencia, su proyección Q recorre el diámetro A'A" realizando el movimiento rectilíneo armónico.

La distancia OQ = e es la elongación en el instante t; la máxima elongación o amplitud es OA' = OA'' = a.

A la velocidad angular de éste, cuyo valor es:

$$\omega = \frac{2 \pi}{T}$$
 [2]

se la llama pulsación del movimiento armónico.

Fig. 385.-Movimiento

rectilineo armónico,

como proyección de

un movimiento circu-

lar uniforme.

De acuerdo a lo demostrado en el § 90, el valor de la elongación en este caso es:

$$e = a \operatorname{sen} \omega t$$
 (3)

2. Representación gráfica.—Tomando como abscisas los tiempos y como ordenadas las elongaciones se puede trazar la curva representativa de este movimiento, que resulta una sinusoide (figura 386).

^(*) En la fórmula [21] del \S 90, póngase: R=a y la fase inicial: $\alpha_0=0$.

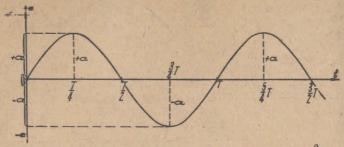


Fig. 386.—Representación gráfica de la función: e = a. sen $\frac{2\pi}{T}$ t

La construcción de la curva se hace en la forma indicada en el § 90.

§ 188.—El sonido. Su naturaleza.—Se comprueba experimentalmente que, cuando un cuerpo vibra por efecto de un choque u otra causa cualquiera, esas vibraciones se transmiten al aire que lo rodea.

Es fácil comprobarlo con el dispositivo de Dreteln repre-

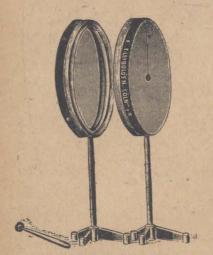


Fig. 387.—Aparato de Dreteln para comprobar la propagación de vibraciones.

sentado en la figura 387, que está constituído por dos anillos que soportan membranas elásticas bien tensas (parches de tambor), y se colocan próximos y paralelos.

Sobre una de las membranas apoya un péndulo liviano y se observará que al golpear la otra, vibra el péndulo sobre la primera. Esto significa que las vibraciones que se originan al golpear una de las membranas, se transmiten a la otra a través del aire que las separa (puede ensayarse la experiencia con dos panderetas).

Cuando el número de vibraciones que se produce por segundo llega a cierto límite y si la intensidad adquiere un

valor suficiente, percibimos una sensación que llamamos ruido o sonido.

Aquellos cuerpos que fácilmente comienzan a vibrar por

efecto de pequeños choques y continúan vibrando durante un intervalo de tiempo más o menos largo, los llamamos cuerpos sonoros. El cobre, el bronce, el cristal, emiten sonidos fácilmente.

Es suficiente tocar suavemente una copa, una campana o una cuerda de cualquier instrumento musical en el momento en que emiten un sonido, para notar que se encuentran en vibración. Bastará impedir la vibración para notar que el sonido se extingue.

Concluimos, por lo tanto, que el sonido es debia la vibración de los cuerpos sonoros.

Pero no basta la vibración del cuerpo sonoro para que percibam sonido: es necesario que entre la fuente sonora y nuestro de exista un medio capaz de trasmitir esas vibraciones, es de r, un medio elástico (gas, líquido o sólido). Si bajo

la campana de una máquina neumática colocamos una campanilla eléctrica observaremos que, una vez hecho el vacío, aunque la campanilla vibre, no se percibe ningún sonido

en el exterior (figura 388).

Es que nuestro oído se comporta como la membrana elástica que usamos en la experiencia de Dreteln. El tímpano (membrana elástica tensa) vibra al recibir la vibración v la trasmite a los huesecillos llamados martillo, yunque y estribo, que apoyan suavemente sobre él. A través de los oídos medio e interno se trasmite la vibración que al fin nos produce la sensación que llamamos sonido.

Fig. 388.—En el vacio no se propaga el sonido.

§ 189.—Características del sonido.—Un sonido queda perfectamente caracterizado si se dan: su intensidad, su altura

y su timbre.

La intensidad, la determinamos subjetivamente por la de nuestra percepción, y así decimos: sonidos fuertes o débiles. Desde el punto de vista mecánico, comprobamos que la intensidad del sonido crece al aumentar la amplitud de la vibración en la fuente sonora, a igualdad de las demás condiciones. Cuando producimos un sonido con una campana, su intensidad depende de la intensidad con que la golpeamos.

La altura del sonido es la característica por la cual los cla-

sificamos en graves o bajos y agudos o altos. Podemos comprobar que la altura depende del número de

Fig. 389.— Ruedas dentadas de Savart.

vibraciones. Si hacemos girar con velocidad constante las ruedas dentadas de la figura 389 y aproximamos un trozo de cartulina, notaremos que la rueda con más dientes produce un sonido más agudo que la de menos dientes al rozar con el borde de la cartulina. Como el número de vibraciones de la cartulina es proporcional al número de dientes de cada rueda, podemos concluir que los sonidos son más altos, o agudos, cuanto mayor es su frecuencia.

La experiencia nos enseña que no todas las frecuencias de vibración pueden llegar a constituir un

sonido.

Los límites están sujetos a variaciones según el observador, pero puede decirse, en general, que

sólo las vibraciones de frecuencia mayor que $16\frac{1}{\text{seg}}$ y menor que $45.000 \frac{1}{\text{seg}}$ pueden constituir un sonido. Se dice

que esos son los límites de frecuencia audible. El límite superior es el que más varía con el observador.

El timbre del sonido es la característica que nos permite, de dos sonidos de igual altura e intensidad emitidos por dos fuentes sonoras diferentes, distinguir cuál corresponde a cada una de ellas. Aun los oídos menos educados distinguen una misma nota emitida por un piano o por un violín.

Es que las fuentes sonoras no emiten sonidos puros, es decir, de una única frecuencia bien determinada. El sonido fundamental, al cual corresponde la mayor intensidad, va acompañado por otros más débiles cuya frecuencia es un múltiplo de la del sonido fundamental, llamados armónicos de aquél. Ahora bien: la cantidad e intensidad relativa de los armónicos varía con la fuente sonora y le imprime su timbre característico.

De todo lo dicho deducimos que, fijados la intensidad, la altura, el timbre de un sonido, queda perfectamente caracterizado.

§ 190.—Medida de la altura de los sonidos. Sirena de Cagniard de Latour.—De las tres características del sonido, la más fácil de medir es la altura (diremos indistintamente altura o frecuencia, entendiendo que ello significa: frecuencia de la vibración que origina el sonido).

Corrientemente se utilizan como patrones de frecuencia los diapasones, que son varillas prismáticas metálicas, dobladas en forma de U y sostenidas por su punto medio. Al golpear

el diapasón vibra con una frecuencia bien definida que depende la longitud de las ramas y de su ancho a (fig. 390), siendo

independiente del espesor b.

Fig. 390.— La frecuencia del sonido dado por el diapasón depende del ancho a, pero no del espesor b.

Con una serie de diapasones de frecuencias crecientes se busca el que emite un sonido de igual altura que aquel cuya frecuencia se desea determinar. El oído es muy sensible para apreciar si dos sonidos simultáneos son de la misma frecuencia (unísono).

Este método tiene el inconveniente de que la frecuencia buscada puede no coincidir con la de

ninguno de los diapasones de la serie.

Entonces se utiliza la sirena de Cagniard de La Tour que es una fuente sonora cuya frecuencia puede tomar cualquier

valor.

Consiste en una caja metálica cilíndrica con dos tapas, una de ellas fija, y otra móvil (fig. 391), que puede girar alrededor de su centro sobre el eje común.

Ambas llevan el mismo número de orificios dispuestos sobre circunferencias

de igual diámetro. Los de la tapa fija inclinados en cierto sentido en el plano normal al radio y los de la tapa móvil in-

clinados en sentido contrario.

Insuflando aire por la parte inferior de la caja, saldrá por los orificios de la tapa fija, formando una corriente de aire que choca con las paredes de los orificios de la tapa móvil y provoca su rotación. Entonces se producen sucesivas interrupciones en la corriente de aire, que vibra produciendo un sonido. La frecuencia del sonido será igual al número de interrupciones por unidad de tiempo.

Modificando la presión del aire se modifica la frecuencia de las interrupciones

y, por lo tanto, la del sonido.

Un contador de vueltas permite medir la velocidad de rotación de la tapa móvil.

Si ambas tapas tienen *m* orificios, en una vuelta se producen *m* interrupciones,

en N vueltas se producirán Nm interrupciones.

La frecuencia del sonido emitido será entonces:

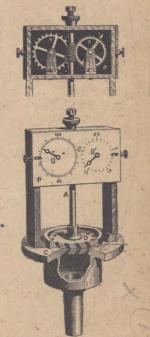


Fig. 391.—Sirena de Cogniard de La Tour, En la parte superior el contador de vueltas, visto de atrás.

 $n = N \cdot m$

siendo N el número de vueltas por segundo.

Una vez igualada la altura del sonido que emite la sirena con la que se quiere determinar, bastará medir N para calcular n.

§ 191.—Inscripción de vibraciones.—Es muy sencilla la experiencia que permite registrar las vibraciones de un diapasón. Basta una lámina de vidrio ahumado y un diapasón con

Fig. 392.— Inscripción de las vibraciones del diapasón.

una aguja o estilete en el extremo de una de sus ramas (figura 392).

Desplazando el diapasón con la punta del estilete apoyado en el vidrio ahumado, mientras está vibrando, inscribe una curva que es la representación gráfica de las vibraciones en función del tiempo.

Para que la curva sea regular es necesario que la veloci-

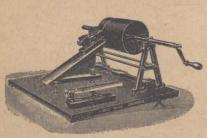


Fig. 393.—Inscripción de vibraciones sobre un tambor en rotación.

dad con que se desplaza el diapasón sea constante. Se suele inscribir la vibración sobre un cilindro que se hace girar con velocidad constante, y al mismo tiempo se desplaza longitudinalmente. En un papel ahumado arrollado al cilindro quedan registradas las vibraciones del estilete o aguja (fig. 393).

Se comprobará que la curva dibujada es una sinusoide, es decir, la misma curva en el movimiento rectilíne

que representa las elongaciones armónico.

§ 192.—Sonido puro y movimiento armónico.—Hemos dicho que el diapasón es empleado corrientemente como patrón de frecuencia, porque da un sonido cuyo período es bien definido y que puede considerarse como un sonido puro.

Ahora bien: analizando detenidamente los gráficos que resultan de la inscripción de las vibraciones de un diapasón,

307

e observa que tienen forma sinusoidal, y de ello podemos sacar en consecuencia que las vibraciones del diapasón son tales que cada punto realiza un movimiento que prácticamente puede confundirse con el armónico simple.

§ 193.—Movimientos vibratorios compuestos. Teorema de Fourier. los movimientos vibratorios que originan los sonidos que percibimos son compuestos en la casi totalidad de los casos.

Aun en el diapasón el sonido puro no se obtiene, sino después que sarmónicos que caracterizan su timbre se han apagado por efecto del

amortiguamiento.

Por eso es que, en general, los movimientos vibratorios de los puntos de un cuerpo que emite sonido no se pueden representar por una si-nusoidé, ni responden a la ecuación del movi-miento armónico simple.

Pero, hay un teorema importante, conocido con el nombre de teorema de Fourier, (cuya demostración no cabe dentro de los límites de esta obra), que permite establecer la relación entre los movimientos periódicos de

forma compleja y los movimientos armónicos simples. Para interpretar su enunciado, vamos a realizar previamente una composición de movimientos vibratorios simples de la misma dirección y

distintos períodos y amplitudes. Supondremos, para simplificar, que el origen de los tiempos se ha elegido convenientemente que las fases iniciales sean nulas.

Las tres sinusoides trazadas representan movimientos vibratorios de períodos T, T/2, T/3 (figura 394).

De acuerdo con el principio de superposición de movimientos (§ 53) para determinar el desplazamiento o elongación resultante, en cada instante, deben sumarse con su signo los segmentos representativos las elongaciones componentes, (las que, como se ha dicho, son de la misma dirección).

El movimiento resultante es representado por la curva irregular en línea negra gruesa,

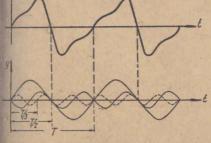


Fig. 394.—Vibración resultante de la suma de otras tres cuyos periodos están en relación 1 : ½ : ½ y cuyas fases iniciales son nulas.

que no es una sinusoide y cuya ecuación es una expresión matemática compleja. Con más movimientos la línea resultante sería distinta, pero, representaría siempre a un movimiento complejo de período T y frecuencia

$$n = \frac{1}{T}$$

El teorema de Fourier establece que un movimiento vibratorio cualquiera de período T puede siempre expresarse, como una suma de movimientos armónicos simples de períodos

$$T, \frac{T}{2}, \frac{T}{3}, \frac{T}{4}, \frac{T}{5} \dots$$

Estudiando la composición de movimientos armónicos simples se puede pues, llegar a los más complejos, o sea, a los movimientos reales de los cuerpos sonoros.

§ 194.—Composición de movimientos vibratorios.—Puede ocurrir que el punto esté sometido a la acción de dos vibracio-

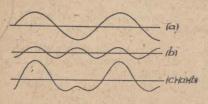


Fig. 395.—Suma de vibraciones de distinto período.

nes. En ese caso, si ambas son paralelas, la vibración resultante se obtiene sumando las ordenadas correspondientes a cada vibración (principio de superposición), como muestra la figura 395. La curva (c) da el movimiento resultante de (a) y (b).

Si ambas vibraciones son de igual período (igual ω), pero

de distintas fase inicial y amplitud, se puede aplicar la regla de Fresnel, que consiste en dibujar la sinusoide con el radio vector resultante de los radios vectores que corresponden a las vibraciones componentes, en el instante inicial (figura 396).

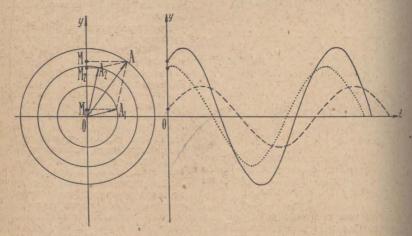


Fig. 396.—Regla de Fresnel para la suma de vibraciones de igual periodo.

En la figura, la curva de trazos representa el movimiento de la proyección del punto A_1 ; la curva de puntos el de la proyección de A_2 , y la línea llena el movimiento resultante (proyección de A).

Cuando las vibraciones se cumplen según rectas perpendiculares, la vibración resultante es más compleja, pues trayectoria y período dependen de los períodos y fases iniciales de las vibraciones componentes. Se obtienen las curvas llama-

das de Lissajous, algunas de las cuales pueden verse en la figura 397.

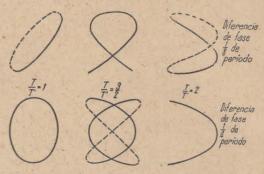
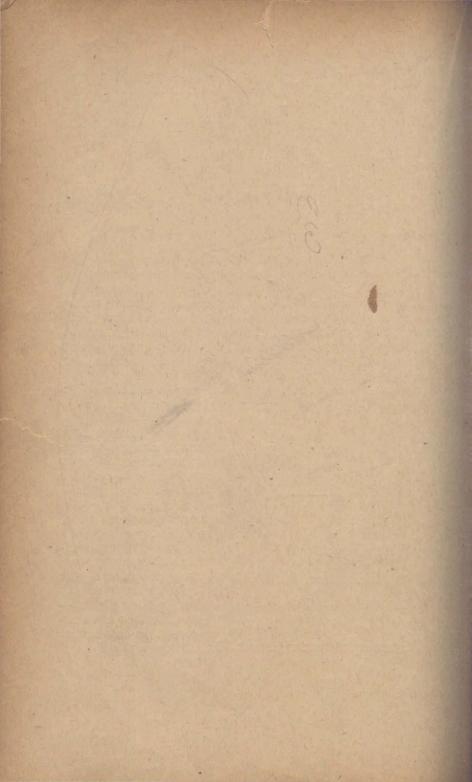


Fig. 397.—Composición de vibraciones perpendiculares. Figuras de Lissajous.

Si los períodos T y T' de las vibraciones componentes son iguales se obtienen en general, elipses, y como casos particulares, rectas; (Esto último para diferencias de fase 0° y 180°).

A la izquierda, en la figura 397, se ven dos elipses que corresponden a diferencias de fase de 45° y 90° respectivamente, (o ea a $\frac{1}{18}$ y $\frac{1}{4}$ de período).

Los ejes de la elipse inferior miden el doble de las amplitu-


Fig. 398. — Instalación para la obtención experimental de las figuras de Lissajous.

des de los movimientos componentes.

Las otras curvas se obtienen componiendo movimientos cuyos períodos están en las relaciones 3: 2 y 2: 1, para las mismas diferencias de fases y amplitudes.

Experimentalmente se obtienen proyectando sobre una pantalla un rayo de luz reflejado en dos espejos adheridos a los extremos de las ramas

de dos diapasones convenientemente dispuestos (fig. 398).

CAPÍTULO XVI

ACÚSTICA

Propagación y superposición de ondas - Vibraciones de varillas, cuerdas y tubos - Resonancia - Acústica musical

§ 195.—Propagación de ondas.—Hemos visto que para que podamos percibir un sonido debe existir, entre la fuente

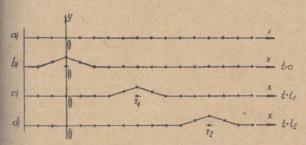


Fig. 399.—Propagación de una onda.

sonora y
nuestro oído, un medio elástico.
Es que la vibración de la
fuente debe
propagarse
hasta llegar a
nuestro oído.

Vamos a aclarar qué

debe entenderse por propagación de una onda.

Imaginemos que el medio elástico está constituído por par-

Fig. 400.—Propagación de una onda en una cuerda y en un resorte.

tículas pequeñas, ocupando cada una su posición de equilibrio bien determinada y supongamos que en el instante t=0 las partículas que rodean al origen son sacadas de su posición de equilibrio por una causa cualquiera (fig 399). Si en un instante posterior t_1 encontramos la misma deformación del medio elástico en el punto de abscisa $x_1 = vt_1$ y en otro instante cualquiera t_2 en el punto $x_2 = vt_2$, y así sucesivamente, decimos que se ha propagado una onda con verescia.

locidad constante y en la dirección del eje x.

Podremos observar esta propagación fijando por uno de sus extremos B una cuerda o un tubo de goma de 2 a 3 metros de longitud y manteniéndolo tirante por el otro A. Produciendo en A una pequeña deformación, se observará que se propaga a lo largo de la cuerda (fig. 400 a).

Lo mismo puede realizarse con un resorte largo y mantenido tirante. Desplazando longitudinalmente las espiras (fig. 400 b), próximas a uno de los extremos y soltándolas, se observa que la deformación se propaga a lo largo del resorte.

En todos estos ejemplos suponemos la propagación de la onda según una única dirección. Puede ocurrir que la onda se propague en todas direcciones, en forma tal que la deformación que en el instante t_1 se produce a la distancia r_1 , se repite en el instante t_2 a la distancia r_2 , tal que:

$$r_2 - r_1 = v (t_2 - t_1)$$

cualquiera que sea la dirección considerada. En ese caso tendremos una onda esférica. Se comprende que todos los puntos que experimentan igual desplazamiento se encuentran sobre una superficie esférica que constituye lo que se llama superficie de onda o frente de onda. Si esta superficie es un plano, la onda se llama onda plana.

Una imagen muy clara de la propagación de ondas la obtenemos observando una superfície de aguas tranquilas sobre la

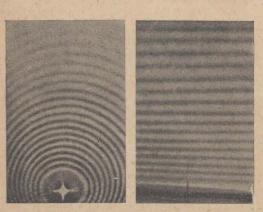


Fig. 401.—Propagación de ondas en la superficie de un liquido.

cual arrojamos una piedra; se produce una onda que se propaga sobre la superficie del agua en todas direcciones. Lo característico de la propagación de ondas es que cada punto del medio elástico sacado de su posición de equilibrio vuelve a ella después de haber pasado la onda: es decir, lo que se propaga es el movimiento sin que se produzca transporte de mate-

ria. Pequeños cuerpos flotantes en el agua oscilan verticalmente alrededor de su posición de equilibrio, pero no se desplazan al pasar la onda.

Llamamos la atención sobre el hecho de que en todos estos

razonamientos hemos supuesto que lo que se propaga no es una vibración, sino una perturbación cualquiera. Este concepto de onda es el que se aplica en el lenguaje meteorológico cuando se dice: "una ola de frío invade al país desde la Patagonia". Se quiere decir: en días sucesivos se registran temperaturas inferiores a la normal en localidades ubicadas cada vez más hacia el norte del país.

Veremos que en el problema de la acústica lo que se pro-

paga es una vibración o movimiento oscilatorio.

§ 196.—Ecuación del rayo.—En lenguaje matemático se define la onda que se propaga en dirección del eje OX, con velocidad v, como una función cualquiera del argumento:

$$\left(t-\frac{x}{v}\right)$$

Es particularmente interesante por sus aplicaciones en la física, el caso en que se propaga un movimiento oscilatorio armónico simple.

Imaginemos una serie de puntos de un medio elástico en reposo, ali-

neados según el eje OX

Si en el instante t=0 el punto O inicia un movimiento armónico en la dirección del eje OY, cuyas elongaciones están dadas por la ecuación (§ 187, fórmula 3).

$$y = e = a \cdot sen \omega t$$
 [1]

admitiendo que ese movimiento se propaga a lo largo de OX con velocidad constante v, podemos establecer que el punto M de abscisa x repetirá el movimiento de O con un retardo:

$$\Delta t = \frac{x}{y}$$
 [2]

ya que éste es el tiempo que tarda la perturbación vibratoria en recorrer la dictancia x.

La ecuación que da las elongaciones de M será por lo tanto:

$$y = a \cdot sen \omega \left(t - \frac{x}{v}\right)^{(1)}$$
 [3]

Esta es la ecuación del rayo que da la posición de un punto cualquiera M, en el instante t.

Puede observarse que se trata de una ecuación doblemente periódica,

con respecto a x y con respecto a t.

En efecto, suponiendo t= constante representa una sinusoide en función de x, y si suponemos x= constante representa una sinusoide en función de t_-

⁽¹⁾ Suponemos aquí que las oscilaciones no se amortiguan, manteniéndose la amplitud inicial a. En la realidad esto se cumple para las ondas planas.

Reemplazando ω por su valor $\frac{2\pi}{T}$ la ecuación del rayo toma la forma:

$$y = a \cdot \sin \frac{2\pi}{T} \left(t - \frac{x}{v} \right) = a \cdot \sin 2\pi \left(\frac{t}{T} - \frac{x}{vT} \right)$$
 [4]

El valor vT que es el espacio recorrido por la perturbación en un período se llama longitud de onda y es la distancia que separa dos puntos que vibran con la misma fase.

$$\lambda = \mathbf{v} \, \mathbf{T} \tag{5}$$

La ecuación del rayo puede escribirse finalmente:

$$y = a \sin 2 \pi \left(\frac{t}{T} - \frac{x}{\lambda} \right)$$
 [6]

Para valores

$$t = 0$$
 , $t = T$, $t = 2 T \dots$

se convierte en:

$$y = a sen 2 \pi \frac{x}{\lambda}$$
 [7]

que representada da la sinusoide función de x, indicada en negro en la figura 402, (pues para x = 0 es y = 0).

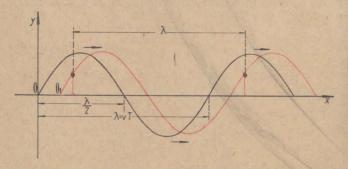
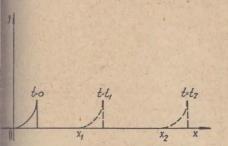


Fig. 402.—Dos posiciones sucesivas de una onda que se propaga en el sentido de las x positivas.


El valor de y se anula para los valores x = 0, $x = \frac{\lambda}{2}$, $x = \frac{\lambda}{4}$, etc.

Para un intervalo (t2 - t1) el corrimiento es:

$$00_1 = v (t_2 - t_1)$$
 (fig. 402, linea roja)

§ 197.—El caso general de propagación de una onda cualquiera puede mararse de análoga manera.

Sea una perturbación representada por la ecuación

ig. 403.—Sucesivas posiciones de una onda de forma cualquiera.

$$y = 5 t^2 - 2t$$
 [8]

Si se origina una onda que se propaga con velocidad v en la dirección del eje x, ello significa que al cabo de un tiempo t cualquiera, el punto A que se encuentra a la distancia: x = vt comenzará a moverse de acuerdo con la misma ecuación:

$$y = 5t_1^2 - 2t_1$$

iendo t_1 el tiempo contado a partir del instante en que la perturbación ha legado al punto A. Por lo tanto, de acuerdo con lo dicho, el tiempo t_1 lebe ser igual a la diferencia entre el tiempo t del origen y el intervalo

tiempo $\frac{x}{y}$ empleado por la onda en llegar a A, luego:

$$t_1 = t - \frac{x}{v}$$

ntonces la onda estará representada por la ecuación:

$$y = 5 \left(t - \frac{x}{v} \right)^2 + 2 \left(t - \frac{x}{v} \right)$$
 [9]

Por otra parte, en el instante t' y en el punto x' la perturbación mene un valor:

$$y' = 5 \left(t' - \frac{x'}{v} \right)^2 + 2 \left(t' - \frac{x'}{v} \right)$$
 [10]

Calculemos el valor y" que toma en un instante posterior t", en el sunto de abscisa:

$$x'' = x' + v (t'' - t')$$
 [11]

Será:

$$y'' = 5 \cdot \left(t'' - \frac{x''}{v}\right)^2 + 2 \cdot \left(t'' - \frac{x''}{v}\right)^2$$

y reemplazando x" por su valor [11]

$$y'' = 5 \left[t'' - \frac{x' + v (t'' - t')}{v}\right]^2 + 2 \left[t'' - \frac{x' + v (t'' - t')}{v}\right]$$

quitando paréntesis y reduciendo se llega a:

$$y'' = 5 \left(t' - \frac{x'}{y} \right)^2 + 2 \left(t' - \frac{x'}{y} \right)$$
 [12]

de donde deducimos, comparando con [10] que:

$$y'' = y'$$

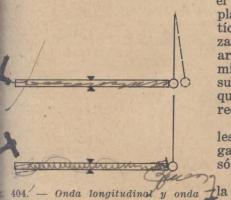
o sea, que la perturbación se ha propagado con velocidad v constituyente una onda.

Se comprende que cualquiera hubiera sido la función elegida, habris-

mos llegado al mismo resultado, pues es el argumento $t-\frac{x}{v}$ el que

vuelve a tomar el mismo valor todas las veces que el incremento de t es igni

al incremento de $\frac{x}{v}$.


§ 198.—Ondas transversales y longitudinales.—Cuando se propaga una onda en un medio elástico pueden ocurrir dos casos extremos: o las partículas se mueven en la dirección de la propagación de la onda, o se mueven en un plano perpendicular a dicha dirección; en el primer caso decimos que se propaga una onda longitudinal, en el segundo, una onda transversal.

Diremos, pues: se propaga una onda elás tica longitudinal cuando las partículas del medio elástico su fren desplaza mientos paralelos a la dirección de la propagación (por ejemplo, el desplazamiento de las espiras del resorte de la figura 400 b).

Y, además: se propaga una onda elástica transversal cuando las partícula del medio elástico sufren desplazamientos contenidos en planos normales la dirección de propagación (p. ej.: las patículas de la fig. 399 y los puntos de la cuerda de la fig. 400a

Con estas definiciones se comprende fácilmente que se se puede hablar de ondas transversales o longitudinales, cua do la perturbación que se propaga es representable por un vetor, como en el caso del desplazamiento de partículas. Pero el ejemplo de la ola de frío, esa clasificación carece de sentillo.

Es interesante hacer notar que las ondas elásticas transrsales sólo pueden propagarse en los sólidos. En efecto: en

transversal.

los sólidos. En efecto: en el flúido, producido el desplazamiento de una partícula, y no existiendo rozamiento entre ellas, no arrastrará en su movimiento a las que están a su alrededor, sino a las que están delante en la di-

Las ondas longitudinales, en cambio, se propagan en todos los medios,

rección del movimiento.

sólidos y flúidos.

Si la varilla metálica de la figura 404, fija en su punto medio, se golpea

vemente en dirección de longitud, se oduce una onlongitudinal e se propaga cia el otro exmo, notándoclaramente e la esferilla ovada en él rechazada al rar la onda. si se la golen sentido insversal, no produce el reazo del penlillo, pero, en nbio, salta un etillo colocaen el extre-

Tendremos a imagen cladel mecanisde la propa-

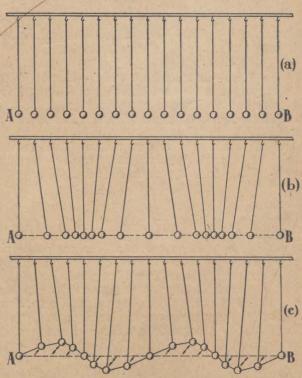
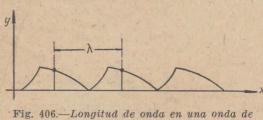



Fig. 405.—Onda longitudinal y onda transversal en un conjunto de péndulos.

gación de las ondas con el conjunto de péndulos de la figura 405 cuyas esferas elásticas están próximas y alineadas segín

Si golpeamos la primera en la dirección AB, chocará con la segunda, y ésta con la tercera, y así sucesivamente, de modo que el movimiento se trasmite desde la primera hasta la última (onda longitudinal) (fig. 405 b).

Pero si desplazamos al primer péndulo normalmente a AB. no tocará al 2º ni lo arrastrará en su movimiento (en un flúi-

forma cualquiera.

do no hay ondas transversales).

Unamos ahora cada esfera con la siguiente por medio de un pequeño hilo (fig. 405 c) y desplacemos la 1ª horizontalmente en dirección normal a AB.

arrastrará a la 2ª, ésta a la 3ª, y así sucesivamente (ondo transversal).

§ 199.—Longitud de onda.—Hemos estudiado hasta aqui la propagación de una perturbación en un medio elástico. Supondremos ahora que en el origen se produce una vibración continua de modo que se origina una emisión continua de ondas iguales.

Cuando transcurre un período T, se repiten las condiciones iniciales, y así sucesivamente. Pero en ese tiempo la onda anterior ha recorrido un camino de longitud:

$$\lambda = \mathbf{vT} \tag{13}$$

de modo que todos los puntos situados en la dirección de propagación a la distancia \(\lambda \) se encuentran en concordancia de fase. o sea están pasando por el mismo estado de perturbación exactamente en las mismas condiciones. (fig. 406).

La longitud λ se llama longitud de onda.

El caso más sencillo que se puede estudiar es aquel en que el movimiento vibratorio que origina las ondas es un movimiento to oscilatorio armónico que es el que adquieren los puntos de las ramas del diapasón cuando se lo hace vibrar. Su ecuación:

$$y = a \cdot sen \omega t$$
 [14]

está representada por la curva de la fig. 407 y se llama simsoide.

La onda generada por un movimiento de este tipo se llama ma sinusoidal. Las sucesivas posiciones de los puntos del eje

Fig. 407.—Longitud de onda.

x están representadas en la fig. 402 en negro para un cierto instante y en rojo para un pequeño intervalo de tiempo después.

§ 200. Superposición de ondas -Ondas estacionarias. — Si tenemos dos fuentes productoras de ondas que actúan

al mismo tiempo, se propagarán ambas ondas en el medio elástico y en cada instante tendremos que aplicar en cada punto el principio de superposición para obtener la onda resultante. Si los desplazamientos que cada una produce son paralelos, el desplazamiento resultante será la suma de los que producirían las componentes. Así, por ejemplo, en la figura 408 se han su-

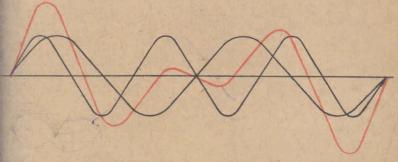


Fig. 408.—Suma de ondas sinusoidales.

mado dos ondas sinusoidales cuyas longitudes son, respectivamente, λ_1 y $\lambda_2=-\frac{2}{3}$ λ_1 .

La línea roja da la suma de ambas que, en general, no es una sinusoide.

Cuando se suman dos ondas que se propagan en la misma dirección y sentido, pero en oposición de fase, (o sea con una diferencia de fase de 180°), en forma tal que los desplazamientos que producirían en cada punto son iguales y de signo contrario, se anulan entre sí permaneciendo los puntos en reposo. A este fenómeno se lo llama interferencia.

Presenta mucho interés en acústica el caso de la superposición de dos ondas sinusoidales de igual longitud e igual amplitud que se propagan en sentido contrario. En ese caso se forman ondas estacionarias.

Analicémoslo en la figura 409, donde se han representado en negro con línea llena y punteada las ondas que se desplazan

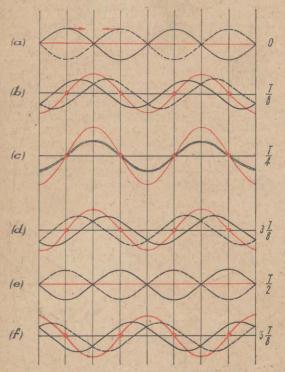


Fig. 409.—Formación de ondas estacionarias por la superposición de dos ondas iguales que se propagan en sentido contrario. Los nodos están indicados por puntos rojos.

hacia derecha e izquierda, respectivamente, y en rojo la onda resultante. Se observa lo siguiente: 19) Hay puntos llamados nodos que permanecen constantemente en reposo: 2º) Todos los puntos vibran con' amplitudes diferentes que crecen desde el nodo hacia el punto medio entre dos nodos (vientre): 3°) Todos los puntos pasan por la posición de equilibrio o de máxima elongación al mismo tiempo. Vibran en concordancia de fase los comprendidos entre dos nodos consecutivos.

Este tipo de ondas se produce, en general, en las fuentes sonoras.

La designación de ondas estacionarias

se justifica si observamos una cuerda tensa vibrando. Se forman nodos intermedios y se ve vibrar la cuerda, pero no produce la sensación de que la *onda progresa*, como ocurre en el caso corriente en que la onda se llama *progresiva* (fig. 410).

Nota.—En las representaciones gráficas, si la onda es transversal, la ordenada en cada punto es proporcional al desplazamiento de cada partícula. Si la onda es longitudinal, cada ordenada es proporcional al desplazamiento que la partícula

correspondiente a ese punto en estado de reposo ha experimentado en la dirección de propagación de la onda. La ordemada positiva significa corrimiento hacia adelante y la negadiva, corrimiento hacia atrás (fig. 411).

§ 201.—Propagación del sonido - Velocidad.—1. Se ha dicho a que el sonido es producido por las vibraciones de los cuerpos

Fig. 410.—Onda estacionaria.

sonoros y que llega a nuestro oído a través de los medios elásticos. Ello indica que se produce una propaga-ción de ondas sonoras.

Como hemos visto, en los flúidos (líquidos y gases) se propagan ondas longitudina-

es y en los sólidos se pueden propagar indistintamente ondas longitudinaes o transversales.

En la fig.

11 se puede
observar que
las vibraciones longitudinales producen condensaciones en
ciertos puntos y dilata-

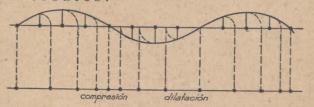


Fig. 411.—Onda longitudinal sinusoidal.

ciones en otros. Como la propagación de la onda sonora se produce en todas direcciones, se forman ondas esféricas pro-

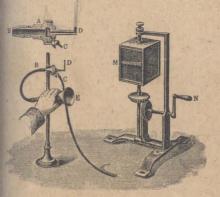


Fig. 412.—Cápsula manométrica de König y su instalación para el estudio de ondas.

gresivas que consisten en la propagación de sucesivas compresiones y dilataciones del medio elástico.

Comprobamos las variaciones de presión que produce la onda sonora, utilizando la cápsula manométrica de König, representada en la fig. 412.

Es una cápsula dividida por una membrana elástica; una débil corriente de gas mantiene la llama de longitud constante en el pico D. Al llegar una onda sonora por B, las variaciones de presión hacen vibrar la lámina y oscilar la presión del gas en la otra parte; a un aumento de presión corresponderá un alargamiento de la llama y a una disminución, un

Fig. 413.—Imágenes que se observan en el espejo giratorio frente a la cápsula manométrica.

acortamiento. Para poderlo observar, se mira la imagen reflejada en un espejo giratorio, como indica la figura, en el cual aparecerá una franja luminosa de ancho constante cuando no llega ningún sonido a la cápsula y una banda luminosa dentada al llegar una onda sonora.

La longitud de onda definida en el § 199 y la fórmula [13] vinculan la velocidad de propagación, la longitud de onda y la frecuencia; pues siendo:

$$n = \frac{1}{T}$$
 fórmula [14]

resulta:

$$\lambda = vT = \frac{v}{n}$$
 [15]

o sea:

$$V = n\lambda$$
 [16

La velocidad de propagación del sonido varía según la naturaleza del

medio en que se propaga, independientemente de la frecuencia y la intensidad.

En general, podemos decir que depende de la elasticidad y de la densidad del medio. En el aire a 15° de temperatura es del orden de los 340 m/seg; en el agua llega a 1400 m/seg, y en el hierro es de unos 5000 m/seg.

2.—Se deduce teóricamente, que la velocidad de propagación de las ondas longitudinales depende del módulo de elasticidad y de la densidad del medio de acuerdo con la fórmula:

$$v = \sqrt{\frac{E}{\delta}}$$
 (fórmula de Newton) [17]

En los gases y para determinado tipo de propagación, el módulo de elasticidad está representado por el producto:

$$E = \kappa p$$

iendo p la presión y \varkappa una constante característica de cada gas, que ara el aire es igual a 1.41.

Luego resulta la velocidad del sonido en los gases:

$$v = \sqrt{\frac{\kappa p}{\delta}}$$
 [18]

Así, por ejemplo, en el aire a cero grado de temperatura y presión noral, siendo:

$$\kappa = 1.41$$

$$p = 760 \text{ mm} \text{ de Hg} = 1033 \text{ gr/cm}^2 = 1033 \times 981 \frac{dina}{cm^2}$$

$$\delta = 0,001293 \frac{g}{cm^3}$$

resulta:

$$v = \sqrt{\frac{1.41 \times 1033 \times 981}{0.001293} \frac{cm^2}{seg^2}} = 332 \frac{m}{seg}$$

En los líquidos se suele dar el coeficiente de compresibilidad:

$$\chi = \frac{1}{E}$$

te modo que resulta:

$$v = \sqrt{\frac{1}{x \delta}}$$
 [19]

Para el agua es:

$$\chi = 0.00005 \; \frac{cm^2}{Kgr} = \frac{0.00005}{980665} \; \frac{cm^2}{dina}$$

$$\delta = 1 \; \frac{g}{cm^3} \; .$$

uego:

$$v = \sqrt{\frac{980665}{0.00005}} \frac{cm}{seg} = 1400 \text{ m/seg}$$

En los sólidos aplicamos directamente la fórmula [17] Por ejemplo, en el hierro

$$E = 2.200.000 \frac{\text{Kgr}}{\text{cm}^2}$$

$$\delta = 7.5 \frac{\text{g}}{\text{cm}^3}$$

entonces:

$$v = \sqrt{\frac{2.200.000 \times 981.000}{7,5}} = \frac{cm}{seg} = 5365 \text{ m/seg}$$

Todos estos valores calculados concuerdan perfectamente con los que se obtienen en las determinaciones experimentales.

3. Relación de v con la temperatura.

En el § 227 se demostrará que la densidad de un sólido está ligada con la temperatura t y el coeficiente de dilatación cúbica γ por la relación:

$$\delta_0 = \delta_t (1 + \gamma t)$$

donde δ_o es la densidad del cuerpo a 0° y δ_t la correspondiente a t° centigrados.

Esta relación puede aplicarse a los líquidos y aún a los ga-

ses si se supone constante la presión.

Sustituyendo en la fórmula de Newton [17], se tiene:

$$rac{V_{
m t}}{V_{
m o}} = rac{\sqrt{rac{E}{\delta^{
m t}}}}{\sqrt{rac{E}{\delta_{
m o}}}} = rac{\sqrt{rac{E}{\delta^{
m t}}}}{\sqrt{rac{E}{\delta^{
m t}} (1+\gamma^{
m t})}}$$

y simplificando:

$$\frac{v_t}{v_o} = \sqrt{1 + \gamma t}$$

o sea:

$$v_t = v_0 \sqrt{1 + \gamma t}$$

Para el aire a la presión normal,

$$\gamma = \alpha = \frac{1}{273}$$
 y $v_0 = 330$ $\frac{m}{seg}$

La velocidad del sonido a 20° resulta:

$$v_{20} = 330 \frac{m}{\text{seg}} \sqrt{1 + \frac{20}{273}} =$$

$$= 330 \sqrt{1,08} = 343,20 \frac{m}{\text{seg}}$$

§ 202.—Medida de la velocidad del sonido. - Método directo.

—Por método directo se determina la velocidad del sonido en el aire midiendo el tiempo que tarda en recorrer una longitud conocida de camino. Para ello se produce un sonido en un lugar al mismo tiempo que se emite una señal luminosa. Un observador colocado a distancia conocida mide la diferencia de tiempo con que percibe la señal luminosa y la onda sonora. Como para las distancias en que se opera, el tiempo que tarda en llegar la luz es prácticamente igual a cero, se tiene directamente el tiempo que tardó en llegar el sonido.

Para evitar el error debido a la influencia del viento, se efectúan simultáneamente mediciones en dos sentidos opuestos. Debe también tenerse en cuenta la presión atmosférica del momento y la humedad del ambiente, pues ambas influyen en la

velocidad de propagación del sonido.

De las experiencias más recientes resulta que el valor más probable de la velocidad de propagación del sonido en aire seco a 0° de temperatura es de:

330.7 m/seg

Para sonidos de muy elevada frecuencia parece que debe

tomarse el valor: 331.7 m/seg.

Para medir la velocidad de propagación en el agua se ha realizado la experiencia en forma análoga: se produce en un lugar un sonido y al mismo tiempo se emite sobre la superficie una señal luminosa. El observador colocado a distancia mide, como en el caso anterior, el tiempo que tarda en llegar el sonido con relación a la llegada de la señal luminosa. Es clásica la experiencia realizada por Colladon y Sturm, en el lago de Ginebra, en el cual midieron el tiempo que tardaba en recorrer un trayecto de 14 Km el sonido emitido por una campana sumergida en el agua.

Obtuvieron para la temperatura de 8° centigrados el valor

$$v = 1435 \text{ m/seg}$$

En otros líquidos y en los sólidos se determina generalmente por métodos indirectos la velocidad del sonido.

§ 203.—Reflexión del sonido - Eco.—Cuando una onda sonora que se propaga por un medio elástico llega a la superficie de separación con otro medio, ya sea más o menos denso, se produce una reflexión de la onda, es decir, que una nueva onda de igual frecuencia comienza a propagarse en sentido contrario.

Así, por ejemplo, si una onda que se propaga en aire se encuentra con la superficie de un muro, se refleja, y el observador colocado delante percibirá el sonido, como si proviniera de otra fuente sonora S' situada detrás del muro (fig. 414).

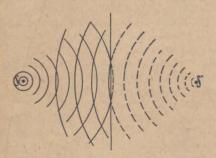


Fig. 414.—Reflexión de ondas esféricas.

Del mismo modo, si la onda se ha generado en el interior del muro y llega a su superficie, se refleja nuevamente hacia el interior. En ambos casos una parte de la energía sonora pasa, además, hacia el segundo medio, produciéndose refracción del sonido.

Cuando un observador percibe distintamente el sonido directo y el reflejado, decimos que se ha producido eco.

Para ello es necesario que el sonido reflejado sea suficientemente intenso y llegue al oído por lo menos con un retraso de 1/10 de segundo. Si el observador está al lado de la fuente sonora, la pared reflectora debe encontrarse, por lo menos, a 17 metros de distancia para que el tiempo que tarda la onda sonora en el camino de ida y vuelta sea 1/10 de segundo.

En las salas de espectáculos es necesario estudiar la distribución de ornamentos y bóvedas para que no lleguen al espectador los sonidos directos y los reflejados, pues aunque no se llegue a producir eco, la superposición de sonidos dificulta la audición. En algunos lugares se colocan cortinados en los cuales la reflexión es

Con dos pantallas metálicas en forma de espejos parabólicos se puede, colocando un reloj en el foco de uno de ellos, oir el ruido de su marcha, colocando el oído en el foco del otro. En este caso las ondas reflejadas han sido enviadas hacia el se-

casi nula.

Fig. 415.—Espejos acústicos.

gundo espejo y allí reflejadas hacia el respectivo foco (fig. 415). La experiencia puede repetirse fácilmente con dos platos comunes. Se oye un reloj de bolsillo a 2 ó 3 metros de distancia.

El funcionamiento de las trompetillas y bocinas utilizadas para dirigir la voz en determinada dirección se basa en las reflexiones que experimentan las ondas sonoras sobre las paredes de la bocina (fig. 416).

Fig. 416.—En las bocinas se producen reflexiones de las ondas sonoras.

§ 204.—Vibraciones del diapasón; tubos, cuerdas y placas.—Se ha visto ya que la superposición de dos ondas de igual frecuencia y amplitud, que se propagan en sentido contrario origina ondas estacionarias. Veremos que todas las fuentes sonoras funcionan produciendo ondas estacionarias.

El diapasón, ya hemos visto que consiste en una varilla prismática doblada y

sostenida por su punto medio.

Golpeando el extremo de una de las ramas, se origina una onda que se propaga a lo largo de la varilla y al llegar al otro extremo se refleja volviendo a recorrerla en sentido contrario; vuelve luego a reflejarse en el primer extremo, y así sucesivamente.

La superposición de las ondas que recorren la varilla en uno y otro sentido da origen a la formación de ondas estacionarias. A los extremos corresponden vientres de vibración y

en cada rama se forman 1, 2, 3, etc., nodos (fig. 417).

La frecuencia del sonido emitido depende del material de que está construído el diapasón (en rigor de la velocidad del sonido en él), y de las dimensiones (ancho y longitud de las ramas), no dependiendo del espesor, como ya se ha dicho. Manteniendo un diapasón en buenas condiciones, o sea preservándolo de golpes violentos o de cambios bruscos e intensos de temperatura, mantiene invariable su tiempo de oscilación. Por eso se los usa como patrones de frecuencia y en particular para medir el tiempo.

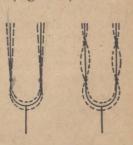


Fig. 417.—Vibraciones en el diapasón.

En los tubos sonoros la vibración se propaga en el aire contenido en un tubo prismático o cilíndrico.

La fig. 418 representa en corte un tubo abierto y uno cerrado.

El aire se insufla por la parte inferior, y al salir por la abertura M se encuentra con el bisel E donde se produce una vibración, pues la corriente de aire pasa alternativamente hacia el interior y hacia el extérior.

Se origina una onda que recorre el tubo y al llegar al

extremo superior se refleja produciéndose entonces ondas estacionarias.

Si el tubo es cerrado (fig. 418 b), como el aire próximo a la tapa no puede vibrar, se formará allí un nodo y en la em-

bocadura un vientre de vibración.

Luego, para la nota fundamental, la longitud del tubo corresponde a ¼ de longitud de onda, o sea:

Pero también emite armónicos superiores en que la longitud del tubo corresponde a 3, 5, 7,... cuartos de longitud de onda, es decir, en general (fig. 419):

$$i = (2 k + 1) - \frac{\lambda}{4}$$
 (k = 0, 1, 2,...) [21]

Fig. 418.—Tubos sonoros abierto y cerrado.

Emitirá una u otra nota según la presión del aire insuflado.

Si el tubo es abierto se produce el mismo fenómeno, pero entonces en la extremidad abierta debe formarse también un vientre de vibraciones. La nota fundamen-

tal corresponde al sonido en que la longitud del tubo es igual a media longitud de onda y en los armónicos sucesivos la longitud del tubo corresponde a un número entero de semilongitudes de onda (fig. 420).

s successivos la longitud del tubo rresponde a un número entero de milongitudes de onda (fig. 420).
$$l = k \frac{\lambda}{2} \quad (k = 1, 2, 3, ...)$$
 [22]
$$l = k \frac{\lambda}{4} \quad l = \frac{3\lambda}{4} \quad l = \frac{5\lambda}{4} \quad l = \frac{5\lambda}{4} \quad l = \frac{5\lambda}{4} \quad l = \frac{5\lambda}{4}$$

Se observa entonces que, a igualdad de longitud, el tubo cerrado emite un sonido cuya longitud de

Fig. 419.—Ondas estacionarias en un tubo cerrado.

onda es doble de la que corresponde al tubo abierto (frecuencia mitad).

Se obtendrán distintas notas con tubos de diferente longitud. La figura 363 muestra un conjunto de tubos que funcionan por el aire insuflado por una bomba de compresión.

Las cuerdas son fuentes sonoras, cuyo funcionamiento explicamos en forma semejante. Como los extremos de las cuerdas están fijos, en ellas se formarán nodos, de modo que la

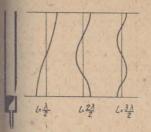


Fig. 420.—Vibraciones en un tubo abierto.

longitud de la cuerda corresponde a un número entero de semilongitudes de onda (fig. 421):

$$i = k - \frac{\lambda}{2}$$
 (k = 1, 2, 3,...) [23]

Se demuestra que la frecuencia fundamental de una cuerda está expresada por la fórmula:

$$n = \frac{1}{2l} \sqrt{\frac{P}{m}} \qquad [24]$$

siendo l su longitud, P la tensión de la cuerda y m la masa de la unidad de longitud.

Se comprueba con el aparato llamado sonómetro (fig.

22).

Son muy inresantes los fenómenos de vibración de placas fijadas en su punto medio y golpeadas o frotadas en el borde. Se pro-

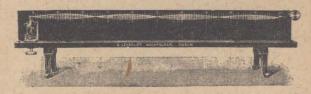


Fig. 421.—Vibraciones de una cuerda.

ducen ondas estacionarias con líneas nodales fáciles de observar colocando arena muy fina sobre la placa. Al vibrar la placa, toda la arena se concentra sobre las líneas nodales (figura de Chladni).

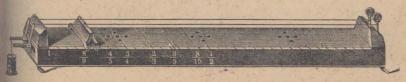


Fig. 422.—Sonómetro para estudiar vibración de cuerdas.

Fig. 423.-Vibración de placas.

En la figura 423 se observan diversos efectos obtenidos en una placa cuadrada modificando el modo de excitación.

Se comprueba que una placa puede emitir diferentes sonidos y puede también producir distintas figuras. La nota fundamental que cada placa emite depende de la superficie, el espesor y el material de que está hecha.

§ 205.—Acústica musical.—Los sonidos puros son agradables al oído. Casi todos los instrumentos musicales emitensonidos simples.

Cuando llegan al oído dos sonidos simples simultáneos (acorde) o sucesivos (melodía) producen una sensación más

o menos agradable según la relación

$$i = \frac{N_1}{N_2}$$

entre sus respectivas frecuencias o alturas. Esta relación se denomina intervalo. Forman una octava dos sonidos en que el intervalo es i = 2, es decir, tales que el número de vibraciones de uno es doble que el del otro. Este intervalo es muy agradable al oído.

Dentro de la octava se clasifican las notas por su intervalo con respecto al primero La escala natural mayor, corrientemente utilizada, se caracteriza por los siguientes intervalos:

Como el intervalo de los sonidos perceptibles abarca va-

rias octavas, se las distingue por un subíndice.

Así, por ejemplo, al la₃, corresponden 435 vibraciones y la escala de un piano común que abarca 8 octavas llega del la₄ al la₆.

Sus frecuencias son (fig. 425):

En la escala mayor hay tres tipos de intervalos:

$$\begin{cases} do - re \\ fa - sol \\ a - si \end{cases} \quad tono \ mayor \qquad i = \frac{9}{8}$$

$$\begin{cases} re - mi \\ sol - la \end{cases} \quad tono \ menor \qquad i = \frac{10}{9}$$

$$\begin{cases} mi - fa \\ si - do \end{cases} \quad semitono \ mayor \quad i = \frac{16}{15}$$

Se utilizan también los sostenidos y los bemoles. El inter-

alo entre la nota sostenida y la nota natural o entre la nota atural y la misma con bemol es un semitono menor cuyo in-

ervalo es
$$i = \frac{25}{24}$$
. Así, por ejemplo:

al doa corresponden 256 vibraciones

al re₃ ,,
$$\frac{9}{8}$$
 256=288 vibraciones

al
$$do_{3}$$
 , $\frac{25}{24}$ 256=266.6 ,,

al
$$re_3b$$
 ,, $\frac{24}{25}$ 256=245.8 ,,

Se observa que una nota sostenida no coincide exactamente con la que le sigue bemolizada. Sin embargo, por razones de simplicidad, en los instrumentos con teclados se sustinyen ambas por una sola, constituyendo la escala templada

en que todos los intervalos son guales a 1,05946. De acuerdo con sto, cada octava del teclado de in piano tiene el aspecto de la ig. 424.

Los intervalos más consonanles, es decir, los que producen mejor efecto al oído son:

Octava
$$i = 2$$

Quinta
$$i = 3/2$$
 (p. ej.: do - sol)

Cuarta
$$i = 4/3$$
 (p. ej.: do-fa)

Un oído educado desde el punto de vista musical, percibe

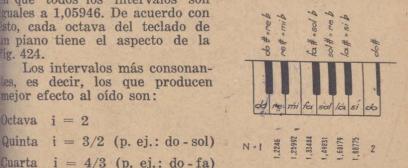


Fig. 424.—Escala en el teclado del piano.

claramente estas consonancias y lo más curioso es que, al llegar a él un sonido proveniente de un acorde en que suenan dos o más notas a la vez, alcanza a distinguir cuáles son las notas que lo forman. Realiza así un análisis de la vibración que recibe, que es bastante compleja, distinguiendo vibraciones elementales componentes.

La fig. 425 da la ubicación, en la escala de frecuencias, de las voces humanas, las notas musicales y los intervalos que abarcan el piano y el órgano.

§ 206.—Grabación del sonido - Fonógrafos.—Uno de los inventos más ingeniosos es el del fonógrafo, aparato mediante

40.000 27840 -13,920 5968

Fig. 425.—Distribución de sonidos y voces de la escala musical.

el cual se reproducen los sonidos que previamente se han registrado en un disco especial.

El sonido que se quiere grabar, llega a una membrana que trasmite las vibraciones a un estilete que pasa por una fina ranura en espiral marcada sobre un disco de una sustancia blanda. Quedan así registradas las vibraciones. Se hace una copia exacta con otra sustancia que luego adquiere consistencia, y al realizar el proceso inverso, una púa va repitiendo las vibraciones efectuadas por el estilete grabador; esas vibraciones se trasmiten a una membrana elástica que reproduce el sonido original

§ 207.—Resonancia.—Los fenómenos de resonancia se presentan en todos los capítulos de la física en que se estudian oscilaciones o vibraciones.

Podemos definirlos así: Cuando a una fuente de vibraciones llegan otras de la misma naturaleza y de igual período que las que ella es capaz de emitir, comienza a vibrar por resonancia.

El ejemplo más simple es el del péndulo doble de Oberbeck, de muy fácil realización. Se toman dos péndulos de igual longitud y se unen

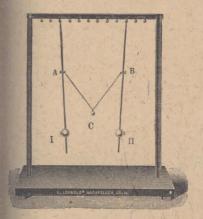
dos puntos cualesquiera con un hilo delgado ACB en cuya parte central se coloca un pequeño peso que lo mantenga estirado (fig. 426).

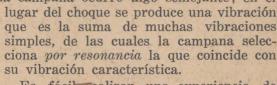
Si se hace oscilar uno de ellos, por ejemplo, el péndulo l dejando fijo al otro, se observará que después de unas cuantas oscilaciones, el segundo también oscila, y llegará un momento en que el I se ha detenido y toda la energía ha pasado al II, que oscila con máxima amplitud. Luego vuelve a oscilar el 1º, y así sucesivamente. La energía pasa de uno al otro por resonancia.

Lo mismo ocurre con las fuentes sonoras; si frente a un

tubo sonoro emitimos un sonido de la misma altura que el propio, comenzará a vibrar por resonancia.

Es muy fácil la experiencia que consiste en colocarse fren-




Fig. 426.—Péndulo doble de Oberbeck para observar resonancia mecánica.

to a un piano apretando el pedal "fuerte", con lo cual quedan las cuerdas libres para vibrar. Se emite entonces un sonido cualquiera y se notará que en el piano vibran varias cuerdas que reproducen la altura del sonido que se ha emitido.

En realidad en todas las fuentes sonoras que hemos mencionado, se producen fenómenos de resonancia. Cuando en el tubo sonoro vibra el aire en la embocadura, como se ha indicado en § 204, se produce allí una vibración muy compleja que es la superposición de muchas vibraciones simples. El tubo selecciona y

refuerza, por resonancia, aquella capaz de producir las ondas estacionarias.

Si se golpea una campana ocurre algo semejante; en el

Es fácil realizar una experiencia de resonancia con un diapasón y una probeta de suficiente altura.

Se hace vibrar el diapasón y se acerca a la boca de la probeta mientras se vierte agua en ella (fig. 427). Cuando la distancia AB desde la boca a la superficie libre del agua, sea igual a la longitud del tubo cerrado que emite la misma nota que el diapasón, se reforzará el sonido, pues, la columna de aire comienza a vibrar por resonancia. En ese instante la longitud AB es igual a ¼ de la longitud de onda en el ai-

Fig. 427.—Resonancia acústica.

re o a un número impar de veces $-\frac{\lambda}{4}$; pues se forman ondas

estacionarias en el tubo, con un nodo de vibración en la superficie libre del agua y un vientre en la boca de la probeta.

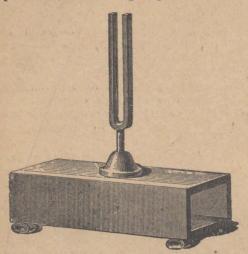


Fig. 428.—Diapasón con caja de resonancia. cuya longitud es la de un tubo sonoro cerrado que emite la misma nota

El fenómeno se percibe con toda claridad.

Se comprende que, conocida la frecuencia n de vibración del diapasón y midiendo la lon-

gitud A B =
$$\frac{\lambda}{4}$$
 se

puede calcular la velocidad de propagación del sonido en el aire.

$$v = n \lambda = 4 n AB$$
 [25]

De esta fórmula podemos deducir, sabiendo que v = 340 m/seg que la longitud de la

probeta que nos permitirá realizar la experiencia, debe ser:

$$L > \frac{340}{4 n}$$
 (m) $= \frac{85}{n}$ metro

Para analizar sonidos se construyen tubos cuya frecuencia de resonancia es conocida (fig. 429), llamados resonadores. Un conjunto de ellos con cápsulas manométricas adaptadas, se observa en la fig. 430.

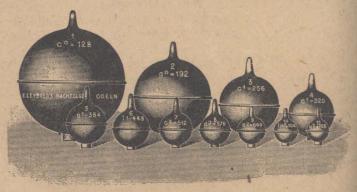


Fig. 429.—Resonadores de Helmholtz para analizar sonidos.

§ 208.—Tubo de Kundt: En este aparato, con el cual se mide la longitud de onda del sonido en el aire, se producen también fenómenos de resonancia.

Consta de un tubo aproximadamente de 1.5 m de longitud y unos 5 cm de diámetro, cerrado en uno de sus extremos con una membrana elástica

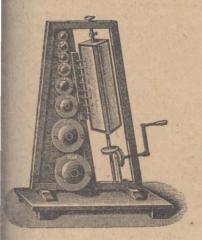


Fig. 430.—Conjunto de resonadores con capsula manométrica para el análisis de un sonido complejo.

y en el otro con un pequeño pistón que permite modificar la longitud l del tubo. En la membrana apoya un extremo de una varilla de vidrio o metal, de más o menos 1 metro de longitud fijada por su punto medio. (fig. 431).

Si mediante una gamuza con algo de resina o un corcho humedecido, se frota la varilla en sentido longitudinal, se producen vibraciones que consisten en acortamientos y alargamientos de la misma v se trasmiten a la membrana elástica y de allí al aire del interior del tubo. Modifi-cando la posición del pistón colocado en el otro extremo, se producirá resonancia,, y por lo tanto, ondas estacionarias, cuando la longitud L sea igual a un número impar de cuartos de longitud de onda.

Para comprobarlo, se coloca a lo largo de una de las generatrices del tubo, algún polvillo liviano, como licopodio o corcho finamente dividido.

Al producirse las ondas estacionarias, en los vientres de vibración se desparrama hacia los costados el polvillo liviano y en los nodos queda en reposo, obteniéndose la distribución de la figura 431, en que la distancia entre dos nodos sucesivos da la medida de la semilongitud de onda.

Dando por corocida la velocidad v del sonido en el aire, se puede calcular la frecuencia:

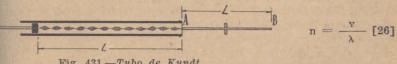


Fig. 431.—Tubo de Kundt.

Esta es la misma que corresponde al sonido de la varilla que vibra con su punto medio fijo. Entonces la longitud de onda en la varilla será doble en su longitud L, pues se forma un vientre en cada extremo y un nodo en el centro, luego: $\lambda_{\rm v}=2$ L y la velocidad del sonido en la varilla:

$$V_v = n\lambda_v = 2 \text{ n L} = 2 - \frac{v}{\lambda} - \text{ L}$$
 [27]

Los detalles más importantes que deben cuidarse al realizar la experiencia son: a) que la varilla esté sostenida exactamente por su punto medio y b) que el aire en el tubo esté bien seco, pues de lo contrario el polvillo húmedo se adhiere a las paredes y no vibra.

Llenado el tubo con diferentes gases y empleando siempre la misma varilla, puede determinarse la relación entre los distintos valores de la velocidad del sonido en los mismos; además de la velocidad del sonido en la varilla calculada con la fórmula [26].

§ 209.—Medida de la longitud de onda por interferencias. — El mé todo de Quincke para medir la longitud de onda del sonido en el aire, se basa en el hecho de que la suma de dos ondas de la misma longitud que se propagan en el mismo sentido con una diferencia de fase de 180º (medio

período) o sea con una diferencia de camino de media longitud de onda, es una

onda de amplitud nula.

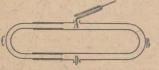


Fig. 432.—Aparato de Quincke para medir longitud de onda por interferencia.

Se utiliza el aparato de la figura 432 formado por dos tubos, uno de los cuales es de longitud variable. Al vibrar el diapasón, penetra por A la onda sonora que se propaga por los tubos ABD y ACD. Si los dos tienen igual longitud se encuentran en D dos ondas en concordancia de fase y se percibe el sonido con máxima intensidad. Alargando el tubo ACD, cuando su longitud es media longitud de

onda mayor que ABD, ambas ondas llegan en oposición de fase y el sonido se anula.

La diferencia de longitudes de ambos tubos, que se mide directamente en una regla adecuada, da la semilongitud de onda y por lo tanto),

En D puede colocarse directamente el oído o, para mayor sensibi-

lidad, una cápsula manométrica de König (§ 201). Conociendo la frecuencia de vibración del diapasón, puede calcularse la velocidad del sonido en el gas que llena los tubos, con la fórmula:

$$v = n \lambda$$

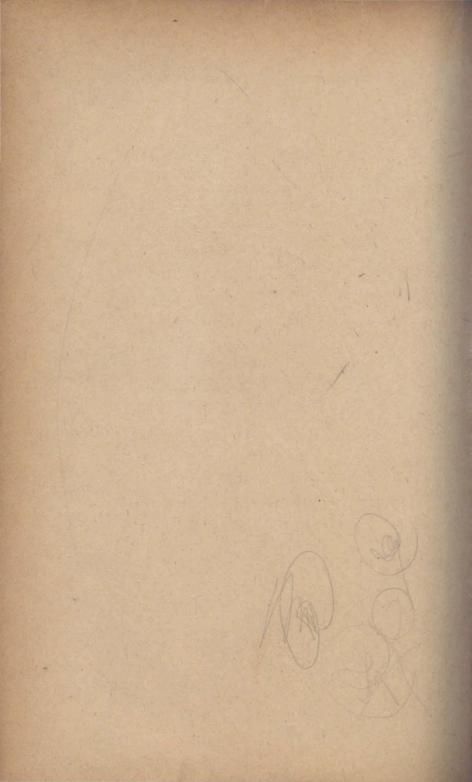
§ 210. Efecto Doppler. — La frecuencia de un sonido depende de la velocidad relativa de la fuente y el observador. Cuando oímos el silbato de una locomotora que se acerca percibimos un sonido más agudo que cuando en las mismas condiciones la locomotora se aleja.

Cuando la fuente sonora se acerca, el observador percibe un sonido más agudo, cuando se aleja, más grave.

Lo mismo ocurre si el observador se acerca o se aleja de la fuente.

Las fórmulas que dan la variación aparente de frecuencia según que el observador se mueva con respecto a la fuente o la fuente con respecto al observador, son algo distintas. En este problema el movimiento se considera con referencia al medio elástico en que la onda se propaga.

Se obtienen las siguientes fórmulas:


a) El observador se acerca o aleja de la fuente:

$$n'=n \ \left(1 \pm \frac{v'}{v}\right)$$

b) La fuente se acerca o aleja al observador:

$$n'=n\;\frac{1}{1\;\overline{+}\;\frac{v'}{v}}$$

En ambas fórmulas el signo superior corresponde al caso de acercamiento; v' es la velocidad relativa y v es la velocidad del sonido en el medio en que se propaga.

CAPÍTULO XVII

TERMOMETRÍA

§ 211. Concepto de temperatura.—1. Apreciaciones sensoriales.—Nuestro sentido del tacto nos permite apreciar cierta característica en los cuerpos que tocamos, por lo cual decimos que están fríos, templados o calientes.

Diremos que por esa apreciación distinguimos los distintos

estados térmicos de los cuerpos.

Pero tal apreciación de nuestros órganos sensoriales tiene un valor muy relativo, pues está sujeta a error debido a la in-

fluencia de sensaciones anteriores.

Un ejemplo clásico nos convencerá de ello. Tomemos tres recipientes (figura 433), uno con agua caliente, otro con agua fría y el tercero con agua tibia; colocando una mano en cada uno de los primeros sentiremos calor y frío, respectivamente.

Pero si después de unos instantes introducimos simultáneamente ambas manos en el agua tibia, la mano que estaba

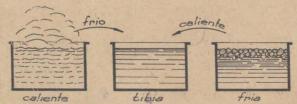


Fig. 433.—La noción subjetiva de estado térmico está sujeta a error.

en el agua caliente nos dará la sensación de frío y la otra de caliente.

Es necesario, pues, buscar definiciones del estado térmico de los cuerpos en los que no intervenga la apreciación sensorial directa del observador.

2. *indices de estado térmico*.—La experiencia prueba que las propiedades físicas de los cuerpos dependen de su *estado térmico*.

Lo hemos tenido en cuenta al estudiar la ley de Boyle-Mariotte, la velocidad de propagación del sonido y el coefi-

ciente de viscosidad.

Quiere decir que el valor de las constante físicas (volumen, densidad y otras que estudiaremos más adelante) nos permitirá caracterizar estados térmicos prescindiendo de nuestras apreciaciones sensoriales directas.

3. Equilibrio térmico.—Al poner en contacto dos cuerpos en distinto estado térmico, observaremos que modifican sus propiedades físicas (por ejemplo, el volumen), pero después de cierto tiempo, llegan a un estado final en el que aquéllas permanecen constantes. Cuando esto sucede decimos que los cuerpos están en el mismo estado térmico.

Como los demás cuerpos pueden influir térmicamente sobre los dos considerados, debemos, a fin de dar rigor a la noción de equilibrio térmico, definir como sigue la igualdad y

desigualdad de estados térmicos.

Imaginemos recipientes constituídos con materiales tales que el estado térmico de los cuerpos situados en su interior no se modifique por la acción de cuerpos exteriores (1).

Dos cuerpos se encuentran en el mismo estado térmico cuando, colocados en contacto dentro de uno de esos recipientes, no modifican sus propiedades físicas.

Se encuentran en distinto estado térmico cuando, en las mismas condiciones, modifican mutuamente sus propiedades.

4. Ordenamiento de estados térmicos - Temperatura.— Hemos definido la igualdad de estados térmicos, pero no nos es posible definir su suma. Por tanto, el estado térmico de un cuerpo no es susceptible de medida.

De ello concluimos que no se trata de una magnitud física. Observando el sentido en que se producen las modificaciones de las propiedades físicas de los cuerpos tomados en la comparación, podemos establecer un sentido de variación en los estados térmicos. Aceptaremos a ese efecto que los cuerpos más calientes están en un estado térmico más elevado que los más fríos.

Podremos así establecer, entre varios estados térmicos, un ordenamiento tal que cada uno sea superior a los anteriores.

⁽¹⁾ Estos recipientes constituyen lo que se llama una envoltura adiabática.

Por ejemplo: tomemos varios recipientes con las siguientes sustancias: una mezcla de hielo y agua en el 1º; alcohol hir-

viendo en el 2º, y agua hirviendo en el 3º.

Si colocamos un cubito de hierro, sucesivamente en cada uno de los recipientes: observaremos que su volumen varía; notaremos que en el 2º recipiente el volumen es mayor que en el 1º, y en el 3º es mayor que en el 2º.

Luego diremos: los estados térmicos están escalonados en el orden mencionado en que crecen los volúmenes del cuerpo

utilizado como testigo.

Es cómodo determinar las diferencias de estado térmico, midiendo las variaciones aparentes de volumen que experimenta un líquido colocado en un recipiente de vidrio, como el de la fig. 434. Cuando aumenta el volumen, diremos que el estado térmico crece, y recíprocamente.

En estados térmicos iguales el líquido llegará al mismo nivel (suponemos que la presión es siem-

pre la misma).

Una vez establecidos los conceptos de igualdad y prevalencia (mayor y menor) de los estados térmicos, podremos asignarle a cada uno un número, estableciendo así una escala arbitraria que constituye un elemento, no de medida, pero sí de comparación de los estados térmicos.

Se la llama escala de temperaturas y el número asignado a cada estado térmico será la tempera-

tura correspondiente.

Fig. 434. — Aparato para comparar estados tér-

§ 212. Termómetro.—Si al aparato de la fig. estados tér-434 le agregamos una escala numerada en forma micos. creciente de abajo hacia arriba, tendremos un termómetro. A cada volumen del líquido le corresponderá una temperatura, leída en la escala, de acuerdo a la posición de

la parte superior de la columna líquida. La graduación es arbitraria, pero válida siempre que se

respete el sentido de prevalencia establecido.

§ 213. Puntos fijos fundamentales - Escala centígrada de mercurio.—Con el aparato de la figura 434 comprobamos que en ciertas condiciones algunas sustancias presentan siempre el mismo estado térmico, o sea la misma temperatura.

Por ejemplo, el hielo mientras se funde, los líquidos que hierven a presión exterior constante, etc. Esas temperaturas

se suelen elegir como puntos fijos fundamentales.

En la escala centígrada se designa 0° (cero grado) la temperatura del hielo fundente y 100° (cien grados) la del agua pura en ebullición a presión normal (760 mm de Hg).

Obtenemos la escala centígrada de mercurio del siguiente modo: medimos la variación aparente de volumen entre 0° v 100° del mercurio colocado en un recipiente de vidrio, y la dividimos en 100 partes iguales, asignando a esas divisiones la serie de los números naturales de 1 a 100 que llamamos grados centígrados en escala de mercurio.

Podemos, pues, definir: un grado centígrado como la variación de temperatura que produce una variación aparente de volumen. igual a un centésimo del aumento aparente de volumen del mercurio contenido en un recipiente de vidrio, cuando se lo lleva del punto de fusión del hielo al de ebullición del agua a presión normal.

Para ser más correctos debe especificarse en qué clase de vidrio está colocado el mercurio, pues no en todos los vidrios la variación aparente de volumen sigue la misma ley. Existen fábricas de vidrio mundialmente conocidas (Jena) que producen tipos especiales de vidrios para termómetros, cuyas propiedades son siempre las mismas.

§ 214. Otras escalas termométricas.—Se comprende que

la escala centígrada que hemos definido es

completamente arbitraria.

Se utilizan en algunos países las siguientes escalas:

Réamur: con los mismos puntos fijos que la centígrada, pero asignándole los números 0° R y 80° R.

Fahrenheit: punto fijo inferior: temperatura de una mezcla de hielo y cloruro de amonio (O° F) y punto fijo superior: vapor de agua en ebullición a presión normal con

el número 212° F.

En esta escala la temperatura del hielo fundente es 32° F.

La correspondencia entre estas tres escalas es entonces:

100° C = 80° R = 180° F

Se deduce fácilmente que, dada una temperatura en una escala, se expresa en las otras escalas con las fórmulas:

Fig. 435.—Comparación de escalas termométricas.

$$C = \frac{5}{4} R = \frac{5}{9} (F - 32) (*)$$
 [1]

$$R = \frac{4}{5} C = \frac{4}{9} (F - 32)$$
 [2]

$$F = \frac{9}{5}C + 32 = \frac{9}{4}R + 32$$
 [3]

Ejemplo:

La temperatura normal del cuerpo humano es 37° C. Expresarla en grados Reamur y Farenheit.

Respuesta: Aplicando las fórmulas [2] y [3]

$$R = \frac{4}{5} C = \frac{4 \times 37}{5} = 29^{\circ}, 6 R$$
 $F = \frac{9}{5} C + 32 = 98^{\circ}, 6 F$

§ 215. Termómetros; diversos tipos. — Hemos dicho ya en qué consiste el termómetro de mercurio. Para facilitar las lecturas se construyen de modo que las variaciones de volumen del mercurio se aprecien en un tubo de pequeño diámetro interior (tubo capilar). Eligiendo capilares de sección perfectamente constante, la graduación estará formada por segmentos de igual longitud. Bastará colocar el termómetro en hielo fundente y marcar el nivel que alcanza el mercurio, luego colocarlo en vapores de agua en ebullición y marcar el punto 100° Dividiendo la longitud comprendida entre ambos trazos en 100 partes iguales, se tendrá también el volumen dividido en 100 partes, y, por lo tanto, marcados los grados centígrados.

Fig. 436.

—Graduación del termómetro.

Extendiendo las mismas divisiones por encima de 100 y por debajo de 0° ampliamos el alcance de la escala centígrada. A las temperaturas inferiores a 0° les atribuimos signo negativo.

$$\frac{C}{R} = \frac{100}{80} = \frac{5}{4}$$
 y $\frac{C}{F - 32^{\circ}} = \frac{100}{180} = \frac{5}{9}$

De ellas se deduce:

$$C = \frac{5}{4} R = \frac{5}{9} (F - 32^{\circ})$$

^(*) Para una determinada temperatura, la longitud de la columna termométrica, contada a partir del cero centigrado, corresponderá a valores distintos en las tres escalas, a los que llamaremos C, R y (F — 32°). Estos valores cumplen las relaciones:

El mercurio sirve como líquido termométrico dentro de ciertos límites, pues solidifica a - 39° y se evapora a 3604.

Para temperaturas inferiores se utilizan alcoholes como líquidos termométricos y para temperaturas muy elevadas se utilizan termómetros a gas o de otros tipos especiales (piróme-

tros ópticos, eléctricos, etc.). Cuando se desea registrar

la temperatura máxima o mínima, Fig. 437.—Termómetros de máxima y de minima.

en un determinado período de tiempo, se utilizan los termómetros de máxima o los de mínima. Los

primeros son termómetros de mercurio en que el menisco empuja un índice al aumentar la tem-Fig.

Termómetro clinico maxima.

peratura y lo deja en su lugar

al disminuir.

Los de mínima son a alcohol y el índice está colocado dentro de la columna líquida de modo que es arrastrado por el menisco cuando la temperatura disminuye y queda en su lugar cuando aumenta (fig. 437).

El termómetro clínico (fig. 438) tiene un extrangulamiento entre el bulbo y el tubo capilar; cuando se enfría el primero la columna

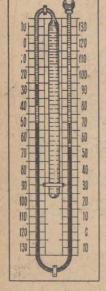


Fig. 439.—Termó-. metro de máxima y minima.

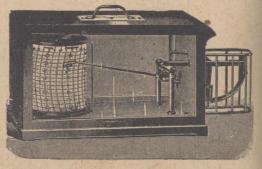


Fig. 440.—Termómetro registrador.

mercurial se corta quedando retenida la parte superior en el nivel máximo alcanzado.

Otros termómetros son al mismo tiempo de máxima y mínima.

En el modelo de la fig. 439, según aumente o disminuya la temperatura sube el mercurio a la derecha o a la izquierda empujando los índices. Éstos se quedan en la posición más alta alcanzada retenidos por un pequeño resorte de acero ajustado al tubo; se los vuelve a bajar con ayuda de un imán.

En algunos casos el líquido que se dilata mueve un índice que se desplaza frente a un cilindro giratorio donde se registra la temperatura (fig. 440).

§ 216.—Verificación de un termómetro: En las mediciones de precisión es necesario previamente, conocer la exactitud

del termómetro con que se opera.

Fig. 441.—Verificación del punto cero.

Aún en los buenos termómetros, debe algunas veces realizarse este estudio.

Los puntos a controlar son los siguientes: a) calibración del tubo; b) verificación del punto cero; c) verificación del punto cien.

Para lo primero se desprende una parte de la columna mercurial y se desplaza a lo largo del tubo, controlando si en cualquier posición ocupa la misma longitud y, en caso contrario, anotando los errores correspondientes. Para verificar la posición del punto cero se coloca el termómetro

en hielo fundente anotando la lectura (error del cero) cuando se ha estabilizado la indicación.

Para el punto cien se coloca el termómetro en vapor de agua en ebullición de modo que quede completamente rodeado por el mismo (aparato de Regnault). (Figura 442).

Se lee la temperatura que indica y se compara con la que debiera marcar, sabiendo que la temperatura del vapor de agua en ebullición es 100°, si la presión exterior es de 760

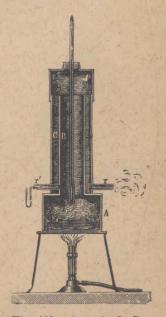
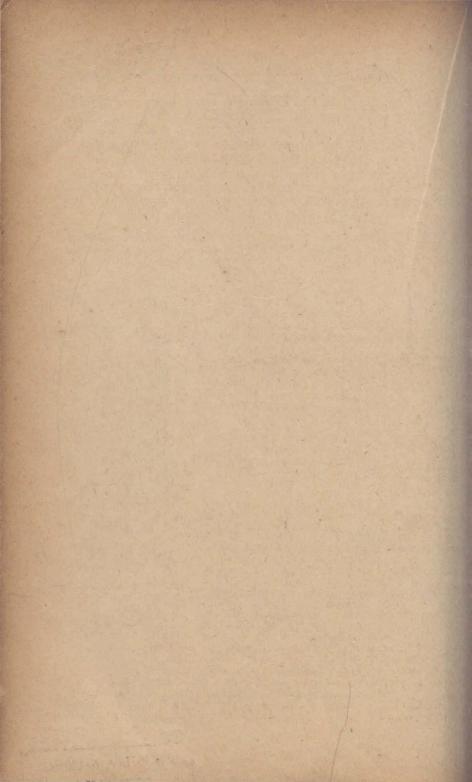



Fig. 442.—Aparato de Regnault para verificar el punto cien.

mm de mercurio. Si la presión es mayor se calcula la temperatura de ebullición, aumentando 0.038 grado centígrado por cada milímetro de aumento en la presión y si es menor se restará a 100°, 0,038 grado por cada milímetro que la presión esté debajo de 760 mm.

Estas correcciones deben repetirse cada cierto tiempo, pues las variaciones de temperatura a que está sometido el vidrio alteran algo sus propiedades. En las fábricas se procede a "envejecer" los termómetros antes de graduarlos para reducir al mínimo las variaciones posteriores.

CAPÍTULO XVIII

DILATACIÓN DE SÓLIDOS Y LÍQUIDOS

§ 217.—Dilatación de sólidos.—Cuando se calienta un cuerpo se observa que sus dimensiones aumentan; en esto consiste la dilatación.

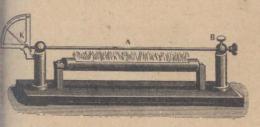


Fig. 443.—Pirómetro de cuadrante.

se prueba la dilatabilidad de varillas de distintos metales en

a dirección de su longitud.

Calentada la varilla A, con su extremo B fijado por un tornillo de presión, se diata, empujando la parte inferior de la aguja K, cuyo extremo recorre un cuadrante graduado.

Cambiando la varilla A por otra de distinta sustancia, podrán notarse diferentes valores del desplazamiento de K.

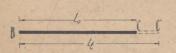
Para comprobar la dilatación cúbica de los sólidos, emplearemos el aparato llamado anillo de Gravesande (fig. 444). Una esfera de cobre o latón a la temperatura ambiente, pasa ajustada por un anillo que puede correrse sobre el soporte vertical del aparato.

Después de calentada la esfera se observa que no puede pasar por el anillo a causa de que su volumen ha aumentado.

Si la esfera y el anillo se calentaran simultáneamente, y

Al aumentar las dimensiones lineales del cuerpo se producen los correspondientes aumentos de su volumen y de la extensión de su superficie.

La fig. 443 muestra el aparato, llamado pirómetro de cuadrante, con el que


Fig. 444.—Anillo de Gravesande.

fueran del mismo material, la esfera seguiría pasando, pues

también se dilataría el anillo proporcionalmente.

Si los materiales fueran distintos, dependería de cuál de los dos se dilata más a igualdad de variación de temperatura, pues cada sustancia tiene su coeficiente de dilatación.

 \S 218. Coeficiente de dilatación lineal de un sólido. — Sea una varilla BC, supuesta inicialmente a la temperatura de 0 grados, y llamemos l_{\circ} a su longitud (fig. 445).

Calentada a t grados su longitud se hará igual a $l_t = BC'$, habiéndose dilatado en una longitud:

$$CC' = l_t - l_0$$

Fig. 445.—Dilatación lineal.

Se ha comprobado que esta dilatación es proporcional a la longitud inicial l_0 , y (dentro de ciertos límites) a la variación de temperatura.

Llamaremos coeficiente medio de dilatación lineal de la sustancia que forma la barra, entre 0° y t° centígrados, al

valor:

$$\lambda = \frac{l_{\rm t} - l_{\rm o}}{l_{\rm o} t}$$
 [2]

el cual representa el aumento medio de longitud por cada unidad de longitud inicial y por cada grado de temperatura.

Los coeficientes de dilatación lineal de los sólidos son del orden de 10^{-5} . Como el grado de temperatura es un número abstracto, también lo será λ , de acuerdo a la fórmula [2] que lo define.

Así, cuando decimos que el coeficiente de dilatación lineal del hierro es $\lambda=0.000011$, queremos significar que por cada grado de aumento de temperatura, una barra de este material experimenta un aumento de longitud igual a 11 millonésimos de su longitud a 0°.

§ 219.—Binomio de dilatación.—De acuerdo a la definición que antecede, la dilatación total CC' de la barra, puede expresarse por la relación:

$$t_{\rm t} - t_{\rm o} = \lambda t_{\rm o} t$$
 [3]

Despejando en ella el valor l, de la longitud a to, resulta:

$$l_t = l_0 + l_0 \lambda t$$

o también, sacando el factor común lo:

$$l_t = l_0 (1 + \lambda t)$$
 [4]

El factor $(1 + \lambda t)$ se llama binomio de dilatación.

Aplicaciones numéricas. — a) Una barra de cobre es calentada de 0_0 a 150_0 . Su longitud inicial es l_0 = 250 cm, y su coeficiente medio de dilatación λ = 0.0000185.

Se pide la longitud a 150 °.

$$l_t = l_0 (1 + \lambda t) = 250 (1 + 0.000018) \times 150) = 250 \times 1.0027 \text{ cm}$$
 $l_t = 250.675 \text{ cm}$

El alargamiento total ha sido:

$$66,33$$
 $u = t_0 = 0.675$ cm = 6.75 mm

b) Una barra de hierro tiene longitud $l_1=5\,$ m a la temperatura $t_1=20\,$ °; calcular su longitud a temperatura $t_2=100\,$ ° sabiendo que su coeficiente medio de dilatación lineal es $\lambda=0,000011$.

Las longitudes a 20° y 100° tienen por expresión:

$$\int t_1 = t_0 (1 + \lambda t_1)$$

$$t_2 = t_0 (1 + \lambda t_2)$$

Despejando de la primera el valor de l_0 , y sustituyéndolo en la segunda, resulta:

$$l_2 = \frac{l_1}{1 + \lambda t_1} (1 + \lambda t_2)$$

y sustituyendo:

$$l_2 = l_1 \; \frac{1 + \lambda t_2}{1 + \lambda t_1} = 5 \; \text{m} \; \frac{1 + 0,000011 \times 100}{1 + 0,000011 \times 20} = 5,004395 \; \text{m}$$

El alargamiento total es: 4,395 mm. Puede calcularse aproximadamente el valor de l₂ con la fórmula:

$$l_2 = l_1 [1 + \lambda . (t_2 - t_1)]$$

la que en el caso presente da:

$$l_2 = 5 [1 + 0,000011 (100 - 20)] = 5 \times 1,00088 = 5,0044$$

teniéndose un resultado suficientemente aproximado.

§ 220.—Medida de coeficientes de dilatación lineal.—Para determinar los valores de λ se puede emplear el método de Lavoisier y Laplace. La figura 446 representa en esquema el dispositivo de medida.

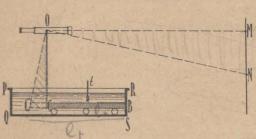


Fig. 446.—Método para la medida del coeficiente de dilatación lineal.

La barra BC está colocada en un recipiente PQRS inicialmente con hielo en fusión y toma la longitud l_0 .

El punto B esta fijo, mientras que en el C apoya un brazo metálico CO ligado a un anteojo, con el que se observa una regla graduada; se hace la lectura de la

división M coincidente con el eje óptico del anteojo.

Calentando el recipiente se funde el hielo, y luego el agua de fusión aumenta de temperatura; mientras tanto, C se desplaza hacia C', y el anteojo se inclina.

A una temperatura t° leída en termómetros distribuídos convenientemente, la dilatación total es CC', y la nueva lectura del anteojo en la regla es: N.

Los triángulos semejantes COC' y MON dan:

$$\frac{\text{CC'}}{\text{CO}} = \frac{\text{MN}}{\text{OM}}$$

$$CC' = \frac{CO}{OM}MN$$

Como CO y OM son medidas fijas del aparato, bastará con medir MN para tener la dilatación $CC' = l_t - l_o$.

Como se conocen la longitud inicial l_o y la temperatura t^o , se puede calcular λ :

$$\lambda = \frac{CC'}{l_0 \cdot t}$$
 [6

Cambiando la temperatura final t° , cambia el valor λ , y es por esto que lo hemos definido como coeficiente medio entre 0° y t° .

La tabla XIII consigna algunos valores entre 0° y 100°

TABLA XIII

COEFICIENTES MEDIOS DE DILATACIÓN LINEAL ENTRE 0° Y 100°

		Plata	
Acero "Invar" $(\frac{3}{10} \text{ Ni})$	0,0000009	Platino	0,0000090
Aluminio Bronce Cobre Hierro Níquel	0,0000238 0,0000175 0,0000165 0,0000122 0,0000130	Plomo	0,0000292 0,0002260 0,0000030 0,0000090 0,0000165

§ 221.—Aplicaciones de la dilatación lineal de sólidos.—

1. Par bimetálico.—La diferencia de los coeficientes de dilatación de dos sustancias puede ponerse en evidencia con el siguiente experimento:

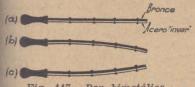
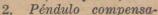


Fig. 447.—Par bimetálico.

Una planchuela de bronce y otra de acero "invar" de igual tamaño son remachadas y colocadas en un mango de madera (fig. 447 a).


Llevado este par bimetálico sobre un mechero de Bunsen, se dobla en la forma indicada por la fig. 447 b, debido a

que el bronce se dilata más, pues su coeficiente es casi 20 veces mayor que el del "invar".

Enfriado fuertemente el par se dobla en sen-

tido contrario (fig. 447 c).

Esta propiedad se aplica para la construcción de termostatos (aparatos que abren y cierran un circuito eléctrico cuando un recinto llega a temperaturas dadas, entre las que se lo quiere mantener), para los termómetros metálicos, y los volantes compensados de los péndulos elásticos de los relojes de bolsillo (figura 448, 449 y 450).



Fig. 449.—Volante compensado. El periodo de oscilación se mantiene constante aunque cambie la temperatura.

Fig. 448.— Termostato. Al enfriarse, el par bimetálico cierra circuito en a, al calentarse en b.

Fig. 450.—Termómetro metálico.

dor.—Debido a la propiedad del péndulo de que sus oscilaciones de pequeña amplitud son isócronas, se lo emplea para la medición del tiempo, sea directamente, o haciéndole regular el escape de los dientes de una rueda, accionada por una pesa suspendida o por la fuerza de un resorte arrollado.

Para que los cambios de temperatura no modifiquen la longitud, y, por lo tanto, el tiempo de oscilación del péndulo, se construyen los péndulos compensadores, en los cuales se trata que la posición del ceptro de gravedad no se modifique.

El más simple es el péndulo formado por una varilla metálica con un recipiente cilíndrico de vidrio, lleno de mercurio en su parte inferior. Al aumentar la temperatura se alarga la varilla, pero también se dilata el mercurio del recipiente y aumenta de nivel (fig. 451), compensando el alargamiento con el

ascenso del centro de gravedad.

Más corrientes son los péndulos de parrilla, construídos con varias barras de distintos metales, en que el descenso de la lenteja producido por el alargamiento de unas, se compensa por el ascenso que produce el alargamiento de otras (fig. 452).

Supongamos que las varillas designadas F en la figura son de hierro y las designadas Z son de cinc.

Si el alargamiento de la varilla de hierro de longitud L = A'B + C'D es igual al de la varilla de cinc de longitud l = B'C, la posición de la lenteja no varía. Para ello, siendo λ_1 y λ_2 los coeficientes de dilatación del hierro y cinc, respectivamente, debe verificarse:

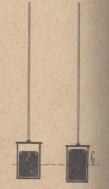


Fig. 451.—Péndulo compensador de mercurio.

 $L_{\lambda_1}t = l_{\lambda_2}t$

para cualquier valor de t.

Péndulo compensador Es decir:

$$L \lambda_1 = l \lambda_2$$
 [7]

o sea:

$$\frac{L}{l} = \frac{\lambda_2}{\lambda_1}$$
 [8]

Siendo la relación
$$\frac{\lambda_2}{\lambda_1} = \frac{0,000018}{0,000012} = \frac{3}{2}$$

debe ser:

$$\frac{L}{l} = \frac{3}{2}$$
 [9]

Para obtener compensación será necesario que correspondan tres varillas de hierro a dos de bronce de igual longitud; por lo tanto, el aspecto del péndulo será el de la fig. 453 con 9 varillas.

§ 222. Fuerzas obtenidas por la dilatación.—Si se trata

de impedir que se dilate una barra metálica que se calienta, o de que se contraiga después de dilatada, se ponen en juego fuerzas, en general, muy grandes.

La figura 454 muestra un aparato para evidenciar estas fuerzas (aparato de Tyndall).

Una barra gruesa de hierro está apoyada sobre un sólido soporte. En un extremo tiene un agujero por el que pasa una varilla de hierro u otro metal, y en el otro una tuerca que se le atornilla ajustando la varilla contra el soporte.

Calentada la barra en estas condiciones, se dilata aflojándose la varilla, pero girando la tuerca se la vuelve a ajustar en caliente.

Al enfriarse, la varilla se corta por efecto

de la fuerza desarrollada.

Esta fuerza se puede calcular conociendo la dilatación de la barra y su módulo de elasticidad E.

Ella equivale a la fuerza que habría que aplicar para producir elásticamente el mismo alargamiento, sin cambiar la temperatura.

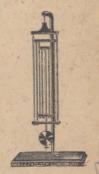


Fig. 453.—Péndulo compensador de hierro y

Dada una barra de módulo de elasticidad E, la fuerza necesaria para aumentar su longitud, en un valor $\triangle l$ es:

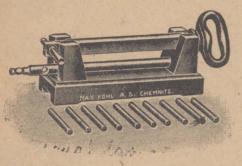


Fig. 454.—Aparato para observar las fuerzas que se obtienen por dilatación.

$$F = E \cdot S \frac{\Delta l}{l}$$

Si \triangle l es producido por una variación de temperatura $(t_2 - t_1)$, se tiene:

$$\Delta l = l \lambda (t_2 - t_1)$$

Reemplazando:

$$F = E S_{\lambda} (t_2 - t_1)$$
 [10]

y por cada cm² de sección y por grado de variación de temperatura:

$$f = E \lambda$$

F111

Para el hierro resulta:

 $f = 20000000 \times 0,000012$

$$f = 24 \frac{Kgr}{cm^2}$$

Si en la aplicación de la figura 454, la elevación de temperatura fué de 2000, y la sección de la barra de 2 cm², la fuerza total F puede llegar a ser:

 $F=24\times200\times2=9600~\mathrm{Kgr}$

F = 9,6 toneladas

§ 223. Dilatación anómala del caucho.—Un tubo de caucho AB estirado por la acción de un peso P, presenta el curioso fenómeno de acortarse al ser calentado.

La figura 455 muestra un dispositivo práctico para comprobarlo; el tu-

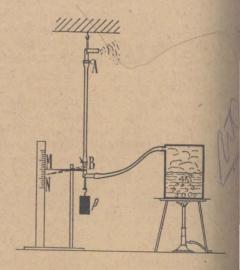


Fig. 455.—Instalación para comprobar la dilatación anómala del caucho.

bo AB se calienta haciendo circular en su interior vapor de agua a 100°, observándose entonces que el extremo M de la aguja BM se corre hacia abajo sobre la escala vertical MN, lo que implica un acortamiento del tubo.

Con determinaciones precisas es posible siempre comprobar que el volumen del tubo aumenta, a pesar del acortamiento, y, por tanto, que el caucho se dilata al elevar su temperatura.

La contracción longitudinal observada se explica por una variación motivada por el cambio de temperatura, en el valor del módulo de elasticidad por tracción E.

§ 224.—Dilatación cúbica - Coeficiente.—En rigor, la dilatación lineal estudiada no es más que un aspecto del cambio de volumen que experimentan los cuerpos y que constituye su dilatación cúbica.

Si un cuerpo que a 0° tiene el volumen V_o ,al ser calentado a to adquiere el volumen V_t, su dilatación total es:

$$\underline{\Delta} V = V_t - V_0$$
 [12]

Llamaremos coeficiente medio de dilatución del cuerpo entre 0° y tº al valor

$$\gamma = \frac{V_t - V_o}{V_o \cdot t}$$
 [13]

que puede definirse como el valor medio del aumento de volumen que experimenta cada unidad de volumen del cuerpo al elevar en 1° su temperatura, entre los límites 0° y t°.

Así, al decir que el coeficiente de dilatación cúbica del platino es: $\gamma=0.000027$ queremos significar que 1 cm³ de platino, al elevar en 1° su temperatura, aumenta su volumen en 27 millonésimos de cm³. Como el valor es distinto según se pase de 0° a 1°, de 11° a 12°, etc., se toma el valor medio entre 0° y la temperatura final de cada experiencia. Las tablas corrientes dan los valores medios de γ entre 0° y 100°.

§ 225.—Binomio de dilatación.—De la fórmuïa [13] se deduce:

$$V_t - V_o = \gamma \cdot V_o.t$$

y, por tanto:

$$V_t = V_0 + V_0$$
, γ t

de donde:

$$V_t = V_0 (1 + \gamma t)$$
 [14]

Esta expresión permite calcular el volumen de un cuerpo a to, partiendo de su volumen a 0° y del valor del coeficiente y. El valor $(1 + \gamma t)$ es el binomio de dilatación.

Para pasar del volumen V_1 de un cuerpo a t°_1} al volumen V_2 del mismo t°_2} se procede como sigue:

Aplicando la fórmula 14 a la temperatura ti se tiene:

$$V_1 = V_o (1 + \gamma t_1)$$

De ella se saca el volumen a 0°:

$$V_0 = \frac{V_1}{1 + \gamma t_1} \tag{15}$$

Escribiendo ahora la fórmula [14] para la temperatura t₂, y reemplazando el valor V₀ de la [15]:

$$V_2 = V_1 \, \frac{1 + \gamma t_2}{1 + \gamma t_1} \tag{16}$$

Aproximadamente puede calcularse V2 con la fórmula:

$$V_2 = V_1 [1 + \gamma (t_2 - t_1)]$$
 [17]

§ 226.—Relación entre los coeficientes λ y γ . —Puede de mostrarse que prácticamente el coeficiente de dilatación cúbica γ , es igual al triple del coeficiente de dilatación lineal.

$$\gamma = 3 \lambda$$
 [18]

Para ello imaginemos un cubo de la sustancia dada, cuya arista mide l_o a la temperatura de 0°. Su volumen a 0° será:

$$V_0 = t_0^3 \qquad . \tag{19}$$

Calentando a to, su volumen se hace V_t y cada arista toma la lon gitud:

$$l_t = l_0 (1 + \lambda t)$$

El volumen V, será:

$$V_t = l_t^3 = l_0^3 (1 + \lambda t)^3$$
 [20]

Teniendo en cuenta las fórmulas [14] y [19] se puede expresar este volumen como sigue:

$$V_t = V_0 (1 + \gamma t) = l_0^3 (1 + \gamma t)$$

Igualando los valores de V,, se tiene:

$$l_0^3 (1 + \gamma t) = l_0^3 (1 + \lambda t)^3$$

y por tanto:

or tanto:

$$1 + \gamma t = (1 + \lambda t)^3 = 1^3 + 3 \lambda^4 t + 3 \lambda^4 t^2 + \lambda^5 t^3$$

y como el valor de λ es muy pequeño, su cuadrado y su cubo son valores despreciables en general, pudiéndose poner simplemente:

$$1 + \gamma t = 1 + 3 \lambda t$$

De donde:

$$\gamma = 3 \lambda$$
 [21]

§ 227.—Variación de la densidad con la temperatura.— Llamando Vo el volumen de un cuerpo a 0° y M a su masa, la densidad o masa específica correspondiente a dicha temperatura es:

$$\delta_0 = \frac{M}{V_0}$$
 [22]

Al calentarse el cuerpo a tº, la masa M no cambia, pero el volumen aumenta y, por tanto, la densidad disminuye, adquiriendo el valor:

$$\delta_t = \frac{M}{V_t} = \frac{M}{V_o (1 + \gamma t)} = \frac{M}{V_o} \cdot \frac{1}{1 + \gamma t}$$
 [23]

y de acuerdo a la [22]

$$\delta_t = \frac{\delta_0}{1 + \gamma t} \tag{24}$$

Deseándose reducir a 0° la densidad hallada para to, se aplica la fórmula, deducida de la anterior:

$$\delta_0 = \delta_t \ (1 + \gamma t) \tag{25}$$

La densidad a0° es igual a la densidad a tº multiplicada por el binomio de dilatación.

Esa misma relación puede establecerse para los pesos específicos pr po, ya que se obtienen multiplicando por la aceleración g, valor constante, las respectivas densidades.

Fig. 456.—Dilatación de liquidos.

§ 228.—Dilatación de líquidos.—Puede comprobarse la dilatabilidad de los líquidos con la experiencia indicada en la figura 456.

Un balón con agua coloreada lleva un tubito en su parte superior; el líquido llega al nivel N_1 cuando está a la tempe-

tura del ambiente.

Al calentar el balón se observa primero un descenso del líquido hasta el nivel N_2 , y luego un ascenso continuado hasta alcanzar un límite superior N_3 .

Para explicarnos el fenómeno debemos tener presente que, además de la dilatación del líquido, interviene en él la del recipiente que lo contiene.

Al principio, se calienta fuertemente este último, y su aumento de volumen hace bajar el nivel a N₂, mostrando una aparente contracción del líquido. Pero en cuanto aumenta la temperatura de éste, su dilatación sobrepasa a la del balón que lo contiene, subiendo el nivel hasta N₃.

§ 229.—Dilatación aparente y real de los líquidos - Dilatómetro.—Para estudiar en forma precisa la dilatación de los líquidos se emplean los dilatómetros. La figura 457 muestra en esquema uno de estos aparatos, formado por un recipiente R y un tubo calibrado cuyas divisiones permiten apreciar fracciones de cm³. X— Yo Lois.

Fig. 457.

— Dilatómetro para liquidos.

1

Se conoce exactamente el volumen V₀ contenido a 0º hasta el enrase N, y las divisiones del tubo están graduadas para esta temperatura. (Estas determinaciones previas se hacen por pesadas y colocando mercurio hasta distintos niveles en el tubo).

Si colocamos líquido en R hasta llegar al enrase N manteniendo la temperatura a 0° , sabemos que su volumen es V_{\circ} .

Calentando el dilatómetro a t°, el nivel del líquido llegará al trazo N₁, correspondiente a un volumen V₁ a cere grado.

Aparentemente la dilatación del líquido ha sido:

$$\Delta a = V_i - V_o$$
 [27]

Esta es la dilatación aparente del líquido.

Pero como el recipiente se ha dilatado, aumentando su capacidad, resulta que el volumen contenido a t° hasta el nivel N_1 es igual al que contenía a 0° hasta un nivel superior N_2 , y cuyo valor es V_2 .

La dilatación real o absoluta del líquido es entonces:

La dilatación del recipiente es: $\Delta_r = V_2 - V_1$ [29]

Sumando [27] y [29] resulta la fórmula [28], luego, de acuerdo a lo que antecede, podemos establecer, que la dilatación real del líquido es igual a la suma de la dilatación aparente con la dilatación del recipiente.

$$\Delta = V_2 - V_o = \Delta_a + \Delta_r$$

La dilatación del recipiente no es de fácil determinación; por ello se recurre a un método indirecto. Se halla previamente la dilatación absoluta del mercurio, y luego, en base a las dilataciones aparentes de este líquido, se calculan las del dilatómetro en que está colocado, para distintas temperaturas.

Una vez hecha esa determinación es posible hallar las dilataciones reales o absolutas de cualquier otro líquido, usando

el mismo aparato.

Cabe destacar que el recipiente hueco se dilata como si fuera macizo.

§ 230.—Coeficientes de dilatación.—Establecido el significado de las dilataciones aparente y absoluta, vamos a definir los correspondientes coeficientes de dilatación.

Sea Vo el volumen del líquido a 0°; Vat el volumen aparente

a t°, y Vt el volumen real a t°.

Llamaremos: coeficiente medio de dilatación aparente, al aumento medio de volumen aparente por unidad de volumen inicial y por cada grado de aumento de temperatura.

$$\gamma_a = \frac{V_{a_t} - V_{o_t}}{V_{o_t}}$$
 [30]

El coeficiente medio de dilatación absoluta se define como en el caso de los sólidos: es el aumento medio de volumen por unidad de volumen inicial y por grado de aumento de temperatura.

$$\gamma = \frac{V_t - V_0}{V_0 t}$$
 [31]

De la fórmula [30] deducimos el volumen aparente a t°:

$$V_{at} = V_o (1 + \gamma_a t)$$
 [32]

El volumen real es:

$$V_{t} = V_{o} (1 + \gamma t)$$
 [3]

Este volumen coincide con el volumen real a t° de la parte del dilatómetro ocupada a t°, o sea $V_{\rm at}$; siendo $\gamma_{\rm r}$ el coeficiente de dilatación cúbica del recipiente:

$$V_t = V_{at} (1 + \gamma_r t)$$
 [34]

Si en [34] reemplazamos el valor Vat de [32]

$$V_t = V_o (1 + \gamma_a t) (1 + \gamma_r t)$$

e igualando con [33]:

$$V_o (1 + \gamma t) = V_o (1 + \gamma_a t) (1 + \gamma_r t)$$

de donde:

$$1 + \gamma t = 1 + \gamma_a t + \gamma_r t + \gamma_a \gamma_r t^2$$

restando 1 y dividiendo por t

$$\gamma = \gamma_a + \gamma_r + \gamma_a \gamma_r t$$

Pero el último término es muy pequeño comparado con los demás, y puede despreciarse, resultando, finalmente:

$$\gamma = \gamma_a + \gamma_r$$
 [35]

Fórmula que nos dice: que e

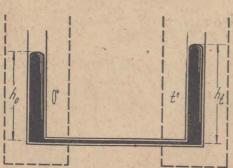


Fig. 458 a.—Esquema del aparato de Dulong y Petit.

el coeficiente de dilatación absoluta es igual a la suma de los coeficientes de dilatación apalerente y del reful cipiente.

§ 231.—Dilatación absoluta del mercurio.—La figura 458 b muestra el aparato empleado por Dulong y Petit para medir la dilatación absoluta del mercurio.

Dos vasos con mercurio a temperatura 0° y t° respectivamente se comunican por

un tubo inferior de pequeño diámetro. (Ver fig. 458 a).

Midiendo las alturas h, y h, de las columnas de mercurio se tiene, de acuerdo a la conocida propiedad de los vasos comunicantes (§ 113).

$$\frac{h_{t}}{h_{0}} = \frac{\delta_{0}}{\delta_{t}}$$

Llamando γ al coeficiente medio de dilatación cúbica del mercurio, y teniendo en cuenta la fórmula [24], podemos escribir

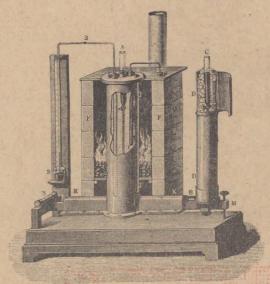


Fig. 458 b.

Fig. 458 b.—Aparato de Dulong y Petit para la medida del coeficiente de dilatación cúbica del mercurio.

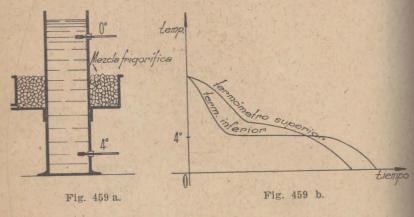
$$\frac{h_t}{h_0} = \frac{\delta_t (1 + \gamma t)}{\delta_t} = 1 + \gamma t$$
 [36]

El valor del coeficiente se despeja resultando:

$$\gamma = \frac{h_t - h_0}{h_0.t} \tag{37}$$

En rigor, medidas precisas han hecho ver que es más correcto expresar la dilatación del mercurio por la siguiente fórmula:

$$\Delta_t = \frac{V_t - V_0}{V_0} = 0,000181 t + 0,000000012 t^2$$
 [38]


Los valores medios del coeficiente de dilatación absoluta del mercurio, calculados de acuerdo a la fórmula [38] resultan:

entre 0° y 50°
$$\gamma = 0,0001810 = \frac{1}{5525}$$

, 0° y 100° $\gamma = 0,0001815 = \frac{1}{5510}$

, 0° y 300° $\gamma = 0,0001866 = \frac{1}{5360}$

§ 232.—Dilatación del agua.—El agua presenta una particularidad en su dilatación: a los 4º centígrados de tempera-

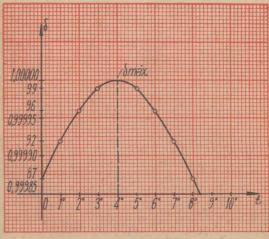


Fig. 459 a. Aparoto para estudiar la variación de densidad del agua con la temperatura.

Fig. 459 b.—Curvas que representan la marcha de las indicaciones de los termómetros.

Fig. 459 c.—Representación gráfica de la variación de densidad del agua con la temperatura.

Fig. 459 c.

ura adquiere su máxima densidad, y, por lo tanto, su volumen mínimo.

Calentando a partir de cero grados una masa de agua, primero se contrae, disminuyendo de volumen hasta llegar a los 4°; desde esta temperatura en adelante sigue aumentando su volumen, como todos los líquidos.

Se puede poner en evidencia esta anomalía con la conocida

experiencia de Hope (fig. 459 a).

El agua de la probeta es enfriada con una mezcla de refrigerante colocada exteriormente; se observa que el termómetro de la parte inferior baja hasta 4° y permanece sin variar.

El termómetro de arriba al principio tiene temperaturas superiores al anterior, pero luego desciende, pudiendo llegar a 0°.

Esta experiencia prueba que la densidad del agua es másima a 4°, quedando por ello en la parte de abajo del vaso.

El volumen específico o volumen de cada unidad de masa del agua, tiene, a 4º centígrados, su valor mínimo. Su valor es:

$$\omega = \frac{V}{M}$$
 [39]

A continuación incluímos algunos valores del volumen específico y de la densidad del agua; gráficamente se ven las variaciones de δ en la figura 459 c.

TABLA XIV

Temperatura	Densidad	Volumen específico
t	δ	ω
Grados centígrados	g	cm ³
Grados centigrados	cm ³	g
0°	0,9998676	1,0001324
1"	0,9999266	1,0000734
2°	0,9999680	1,0000320
3°	0,9999992	1,0000078
4°	1.0000000	1,0000000
5°	0,9999918	1,0000082
6°	0,9999680	1,0000320
10°	0,9997271	1,0002730
20°	0,9982303	1,0017728
30°	0,9959708	1,0043456
40°	0,9922412	1,0078194

§ 233.—Coeficiente medio y coeficiente de dilatación verdadero a tº.

—Tanto para sólidos como para líquidos, hemos definido hasta ahora los coeficientes medios de dilatación, expresando el volumen a to con la fórmula:

$$V_t = V_o (1 + \gamma t)$$

y el coeficiente medio:

$$|\gamma|_{o}^{t} = \frac{V_{t} - V_{o}}{V_{o} \cdot t}$$
 [40]

En rigor, la expresión del volumen a to adopta en general la forma:

$$V_t = V_0 (1 + at + bt^2 + ct^3)$$

y aplicando la definición [40] el coeficiente medio resulta:

$$|\gamma|_0^t = a + bt + ct^2$$

Si en cambio, queremos el coeficiente de dilatación verdadero a 🛝 debemos dar un pequeño incremento de temperatura Δt a to, y medir el correspondiente aumento de volumen AV, calculando el coeficiente con la fórmula:

$$\gamma = \frac{1}{V_0} \cdot \frac{\Delta V}{\Delta t}$$

Se demuestra con otros recursos matemáticos, que este coeficiente de dilatación a to está dado por la fórmula:

$$\gamma = a + 2bt + 3 ct^2$$

Para interpretar estos valores nos referiremos a la figura 460, que es una representación gráfica de las dilataciones absolutas referidas al voltmen V_n y tomadas a la presión atmosférica ordinaria.

Las ordenadas representan los valores de las dilataciones:

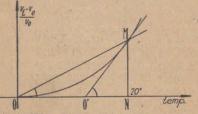


Fig. 460.—Dilatación cúbica. Coeficiente medio y coeficiente a la temperatura t.

$$\frac{V_{t} - V_{o}}{V_{o}} = at + bt^{2} + ct^{3}$$
 [4]

y las abscisas las temperaturas t El coeficiente medio entre 0° y 20° es:

$$|\gamma|_0^{20} = \frac{MN}{ON} = \text{tg MON}$$

siendo representado por la tangente trigonométrica del ángulo que forma la cuerda OM con el eje Ot.

El coeficiente verdadero a 20°, por ejemplo, está dado por la tangente igonométrica del ángulo que forma la tangente geométrica en M con el je 0t.

$$\gamma_{\,20}\!=\!\begin{array}{c} \frac{MN}{O'N}=\left(\frac{1}{V_0}\,\frac{dV}{dt}\right)_{\,\,20^{\circ}}=tg\ MO'N$$

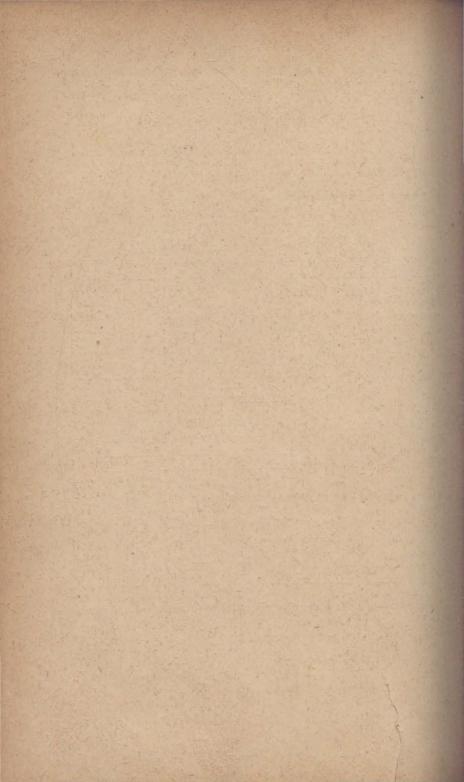
En algunos casos se dan los tres coeficientes a, b y c, de la fórmula: $\{1\}$ en otros es suficiente dar dos a y b. Además, en el caso de los sódos se aplican los mismos conceptos al coeficiente de dilatación lineal.

Veamos algunos valores:

TABLA X V DILATACIÓN LINEAL DE SÓLIDOS

Sustancia	a	b	λ20
Plomo	0,00002726	0,0000000074	0,00002800
Cobre	1607	403	1623
Plata	1827	48	1486
Platino	887	13	892
Aluminio	2354	70	2382
Oro	1414	239	1366
Níquel	1248	74	1278

TABLA XVI DILATACIÓN DE LÍQUIDOS


Cuerpo	Limi	tes	a	b	c	Y20
	2		10-5	10-9	10-11	10-5
Acetona	0° a	54°	132,40	3809	880	147
Benceno	0° a	81°	117,63	1278	806	124
Hexano (normal).	0º a	66°	129,48	1747	1236	138
Colueno	0° a	100°	102,80	1779	ATT OF THE PARTY OF	110
Alcohol metílico .	0º a	70°	118,56	1565	911	126
Acohol amílico	0° a	94°	97,02	1873	365	105
Acido acético	16º a	107°	106,30	-126	1088	117
Anilina	0° 8	140°	82,35	841	107	86
Xileno	0 8	141°	96,40	1025	328	101
Xileno	19° a	131°	97,01	871	528	103

Aplicación. — Se desea calcular el coeficiente medio de dilatación del tenceno entre 0° y 30°.

$$132,40 \times 10^{-5} + 3809 \times 10^{-9} \times 30 + 806 \times 10^{-11} \times 30^{2} = 0,001446$$

El coeficiente a 20° es:

$$v_{20} = 0,00124$$

CAPÍTULO XIX

DILATACIÓN DE GASES - TEMPERATURA ABSOLUTA - ECUACIÓN DE ESTADO - TERMÓMETRO DE GAS

§ 234.—Dilatación de los gases.—Elevando la temperatura de una masa de gas, aumenta su volumen, si el recipiente que lo contiene se lo permite. Si este último es indeformable, el volumen de la masa gaseosa no cambia, pero su presión aumenta.

Presión, volumen y temperatura son tres parámetros que definen el estado de una masa de gas. Para llegar al establecimiento de la relación que los vincula (ecuación de estado), comenzaremos por estudiar los casos simples, en que uno de los parámetros queda invariable.

El caso de: t=constante, ya lo hemos estudiado en la ley de Boyle-Mariotte. Ahora veremos sucesivamente los casos correspondientes a variaciones de la temperatura t, a los que

llamaremos dilataciones.

Si p = constante, variará el volumen, teniéndose una dilatación a presión constante.

Si V = constante, variará la presión, y el fenómeno será una dilatación a volumen constante.

§ 235.—Dilatación a presión constante - Coeficiente.— Para realizar la dilatación de un gas a presión constante, pue-

de emplearse el dispositivo indicado en esquema por la

figura 461.

El gas a estudiar se coloca en el recipiente R que lleva un tubo horizontal en cuyo interior corre un índice de mercurio M.

El tubo está graduado y constituye un dilatómetro; la posición del índice M en

A STATE OF THE STA

Fig. 461.—Dilatación de un gas a presión constante.

la escala del tubo, da el volumen V del gas encerrado en el recipiente.

Colocando hielo en fusión en la caja ABCD, el termómetro marcará 0° y el índice se correrá hacia adentro deteniéndose en la lectura V_{\circ} .

Calentando la caja metálica ABCD se podrán determinar los distintos volúmenes que ocupa el gas encerrado en R a medida que cambia la temperatura del agua de fusión del hielo.

La presión del gas queda invariable e igual a la presión atmosférica (salvo cambios accidentales de ésta, que se aprecian, si los hay, con un barómetro).

Si al llegar a la temperatura to, el volumen es Vt, el aumen-

to de volumen ha sido:

$$V_t - V_0$$

Llamaremos coeficiente medio de dilatación del gas a presión constante entre 0° y t°, al valor:

$$a = \frac{\mathbf{V}_t - \mathbf{V}_o^*}{\mathbf{Y}_o \cdot \mathbf{t}_{r_j}}$$
 [1]

el cual representa el aumento medio de volumen que experimenta cada unidad de volumen del gas, por cada grado de elevación de temperatura, siempre que se mantenga constante la presión.

§ 236.—Ley de Gay-Lussac.—Gay-Lussac, operando con diferentes gases y con ayuda de un aparato análogo al indicado en la figura 461, dotado de un tubo exactamente calibrado, llegó a establecer la siguiente ley (1):

El coeficiente de dilatación de un gas entre 0° y t°, bajo presión constante, es independiente de la temperatura t, de la presión p y de la naturaleza del gas.

Para todos los gases, este coeficiente tendría el valor:

$$\alpha = \frac{1}{273} = 0.003665$$

§ 237.—Reducción de volúmenes.—De acuerdo con la definición del coeficiente α dado por la fórmula [1], se tiene:

$$V_{a} = V_{a} + V_{a} \alpha t$$

⁽¹⁾ Se la llama ley de Gay-Lussac: también ley de Charles.

y, por tanto:

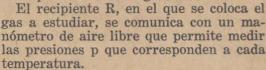
$$V_{t} = V_{o} (1 + \alpha t)$$
 [2]

Conocido el valor del coeficiente a, y, por tanto, el binomio (1 + at), se puede pasar del volumen a 0° al correspondiente

a la temperatura t°.

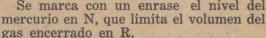
También se puede reducir a 0° el volumen V, en el caso de quedar invariable la presión. Basta con despejar Vo en la fórmula [2]:

Ejemplo:


Supongamos: t = 91°; V, = 100 cm³; p = constante. Siendo:

$$V_0 = \frac{100}{1 + \frac{1}{273} \times 91} = \frac{100}{1 + \frac{1}{3}} = 75 \text{ cm}^3$$

§ 238.—Dilatación a volumen constante.—Elevando la temperatura de una masa de gas encerrada en un recipiente cuyo volumen no cambia, se constata que la presión aumenta. A este fenómeno se lo llama dilatación a volumen constante.


Para determinar la relación entre presiones y temperaturas, puede emplearse

el dispositivo de la figura 462.

Inicialmente se coloca hielo en la caja ABCD; los termómetros t marcan 0° y la presión toma un valor p_0 , medido por la columna de mercurio h_0 sumada a la

presión exterior H. (1).

Al elevarse a to la temperatura del agua de fusión, el gas aumenta su volu-

men y su presión, empujando el mercurio.

Para mantener constante el volumen, se levanta el tubo PQ hasta que el mercurio vuelva al enrase N.

El desnivel h dará la presión p_t del gas $p_t = (H + h)_{\rho}$

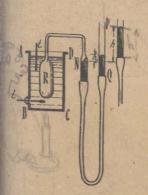


Fig. 462.—Dilatación de gases a volumen cons-

(1) En rigor: $p_o = (H + h_o) \rho$; ($\rho = peso específico del Hg).$

Al variar de 0° a t° la temperatura, se ha producido una variación de presión:

$$p_t \rightarrow p_0 = (h - h_0) \rho e$$
 [3]

Se llama coeficiente medio de dilatación del gas a volumen constante, entre 0° y t°, al valor:

$$\beta = \frac{\mathbf{p_t} - \mathbf{p_0}}{\mathbf{p_0}\mathbf{t}} \tag{4}$$

que representa el aumento medio de presión del gas, por cada unidad de presión inicial y por cada grado de elevación de temperatura, entre 0° y t°.

De la fórmula se deduce:

$$p_t = p_0 + p_0 \beta t$$

y, por tanto:

$$p_t = p_0 (1 + \beta t)$$
 [5]

§ 239.—Gas ideal o perfecto.—Es fácil constatar que, para un gas que cumple exactamente la ley de Boyle-Mariotte, los coeficientes de dilatación α y β son iguales.

En efecto, consideremos una masa de gas a 0° y presión

po, ocupando un volumen Vo.

Calentemos a presión constante hasta la temperatura t; el volumen V* será:

$$V_t = V_0 (1 + \alpha t)$$
; y la presión: p₀.

Repitamos la experiencia, pero calentando a volumen constante; a la temperatura t la presión será:

$$p_t = p_0 (1 + \beta t)$$
 y el volumen V_0 .

Ambos estados finales corresponden a una misma tempetura t, y, por lo tanto, estarán vinculados por la ley de Boyle-Mariotte:

$$p_0V_t = p_tV_0$$

Sustituyendo los valores anteriores de V, y pt:

$$p_0V_0$$
 (1 + at) = V_0p_0 (1 + βt)

y simplificando:

$$1 + at = 1 + \beta t$$

de donde:

$$\alpha = \beta$$
 [7]

Y si el gas cumple también la ley de Gay-Lussac, se tiene:

$$a = \beta = \frac{1}{273} = 0,003665$$
 [8]

Como consecuencia de esto, resulta:

$$p_t = p_0 (1 + at)$$
 [9]

Los gases reales, ya hemos visto (§ 154) que no cumplen rigurosamente la ley de Boyle-Mariotte.

Mediciones precisas a que nos referiremos en el siguiente parágrafo, han demostrado que también la ley de Gay-Lussac debe considerarse como una ley límite que, en rigor, ningún gas cumple exactamente.

Se llama gas ideal o gas perfecto a un gas que cumple rigurosamente las leyes de Boyle-Mariotte y Gay-Lussac.

De los gases reales, los que más se acercan al cumplimiento de esas leyes son el hidrógeno y el helio.

§ 240.—Experiencias de Regnault. Valores de α y β .—Regnault estudió la dilatación de los gases a presión y a volumen constante empleando los dispositivos indicados en las figuras 463 y 464.

Los resultados obtenidos por Regnault, indican que cada gas tiene valores propios para los coeficientes α y β , los cuales son influenciados por la temperatura y por la presión.

A la presión de una atmósfera, los coeficientes medios entre 0° y 100° del nitrógeno, el hidrógeno, el CO² y el aire hallados por Regnault son:

	a	β
Nitrógeno	0,0036682	AS DESCRIPTION OF THE PARTY OF
Hidrógeno	0,0036678	0,0036613
Anhídrido carbónico	0,0036896	0,0037099
Aire	0,0036653	0,0036706

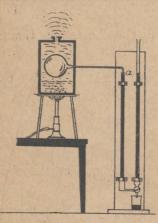


Fig. 463.—Dilatación a volumen constante. A medida que aumenta la temperatura se vierte mercurio por la rama abierta del manómetro para mantener constante el volumen (nivel constante a).

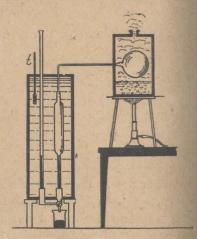


Fig. 464.—Dilatación a presión constante. Al dilatarse el gas, se sava el mercurio del manómetro hasta igualar el nivel en ambas ramas (presión constante, igual a la exterior).

Determinaciones precisas de Chapuis, Travers, Kamerlingh Onnes y otros han permitido establecer que para el hidrógeno, el coeficiente medio entre 0° y 100° , para $p_{\circ}=1$ atmósfera es:

$$\beta = 0.0036626 = \frac{1}{273.03}$$

y para el helio en las mismas condiciones:

$$\beta = 0.0036627$$

Estos valores son prácticamente $\frac{1}{273}=0.003665$, valor pre-

visto por las leyes de Gay-Lussac y Boyle-Mariotte. Regnault comprobó la influencia de la presión y la temperatura en los valores α y β ; así para el anhídrido carbónico encontró:

Variación del valor de \beta para el anhídrido carbónico

$p_0 = 76$	cm	β:	=	0,0037099	(entre	0°	y	100°)
$p_0 = 252$	cm	β:	=	0,0038450	(entre	0°	y	100°)
$p_0 = 76$	cm	B :	=	0,0037040	(entre	00	У	2000)

Para presiones elevadas, las determinaciones de Amagat y Andrews han demostrado que la ley de Gay-Lussac no es válida ni en primera aproximación, salvo para el hidrógeno, cuyo coeficiente $\mid \beta \mid_0^{100}$ llega a un máximo de 0,00383 para p = 200 atmósferas y después vuelve hacia

273

§ 241.—Temperatura absoluta.—Si en la expresión:

$$V_t = V_0 (1 + \alpha t)$$

ponemos $\alpha = \frac{1}{273}$ — y damos a la temperatura el valor

 $t = -273^{\circ}$, resulta:

$$V_{(-273)} = V_0 \left[1 + \frac{1}{273} \times (-273) \right] = V_0 \left(1 - \frac{273}{273} \right) = 0$$
 [9]

De modo que si admitimos que un gas sigue cumpliendo la ley de Gay-Lussac, hasta la temperatura de $t=-273^\circ$, su volumen debe reducirse a 0, cualquiera que sea su valor inicial V_\circ .

Análogamente, la fórmula:

$$p_t = p_0 (1 + at)$$

nos daría para
$$t = -273^{\circ}$$
, $p_{273} = 0$ [10]

A la temperatura de — 273° centígrados, un gas ideal tendría volumen y presión iguales a cero. Dicha temperatura constituye el cero absoluto.

Las temperaturas determinadas a partir de este cero se llaman temperaturas absolutas.

De acuerdo con esta definición, entre la temperatura absoluta T y la centígrada t, existe la siguiente relación:

$$T = 273^{\circ} + t$$
 [11]

Ejemplo:

El valor de la temperatura t = 37° centigrados, equivale a la temperatura absoluta:

$$T = 273^{\circ} + 37^{\circ} = 310^{\circ}$$

Esta es la temperatura absoluta del cuerpo humano en condiciones normales.

§ 242.—Transformaciones y ecuación de estado de los gases ideales.—Hemos dicho que un gas ideal o perfecto es un flúido que se supone cumple rigurosamente las leyes de Boyle-Mariotte y Gay-Lussac.

En los gases ideales las transformaciones isotérmicos (t = constante) están regidas por la ley de Boyle-Mariotte:

Las transformaciones *isobáricas* (p = constante) estan regidas por la ley de Gay-Lussac:

$$V_t = V_0 \, \left(1 + \alpha t \right)$$

y las transformaciones isocoras (v = constante) son regidas por la ley:

$$p_t = p_0 (1 + \alpha t)$$

consecuencia de lo anterior, según se ha visto (§ 238).

Una transformación que lleve el gas perfecto de un estado p_o, v_o, t_o, a otro p, v, t, está regida por una fórmula llamada ecuación de estado de los gases ideales, la que se deduce de las leyes de Boyle-Mariotte y de Gay-Lussac.

Consideremos una masa de gas a temperatura $t_{\circ}=0^{\circ}$, presión p_{\circ} y volumen V_{\circ} y hagámosla calentar hasta t° , manteniendo constante la presión p_{\circ} .

El gas se dilatará, adquiriendo un volumen:

$$V_t = V_0 (1 + \alpha t)$$
 [12]

Si después de esto aumentamos la presión hasta llegar al valor p, sin cambiar la temperatura, el volumen tomará un valor V.

Como esta última evolución es a temperatura constante, valdrá la ley de Boyle-Mariotte:

$$pV = p_{\circ} V_{t}$$

y sustituyendo el valor de Vt dado por la [12], resulta:

$$pV = p_0 V_0 (1 + \alpha t)$$
 [14]

Esta es la ecuación de estado buscada, la que vincula los parámetros p, V y t de que depende el estado de una masa de gas.

A fin de hacer más gráfico el método para deducirla, agregamos el cuadro que sigue:

	Presión	Volumen	Temp
Estado I " II " III	po po p	V _t V	$ \left\{ \begin{array}{c} 0^{\circ} \\ V_{t} = V_{o} \; (1+\alpha t) \\ t^{\circ} \\ t^{\circ} \end{array} \right\} \begin{array}{c} \text{Gay Lussac} \\ V_{t} = V_{o} \; (1+\alpha t) \\ \text{Boyle-Mariotte} \\ \text{pV} = p_{o} V_{t} \end{array} \right\} \text{pV} = p_{o} V_{o} \; (1+\alpha t) $

§ 243.—Reducción de volúmenes.—La ecuación de estado permite realizar reducciones de volúmenes a distintas presiones y temperaturas.

Ejemplo:

Una masa de gas a la temperatura $t=80^{\circ}$ y presión p=1300 mm de mercurio tiene un volumen V=500 cm³. Calcular su volumen en las condiciones normales ($p_o=760$ mm Hg, $t_o=0^{\circ}$).

La ecuación de estado de los gases [14] nos permite es-

cribir:

$$p_{\circ} \ V_{\circ} = \frac{pV}{1 + \alpha t}$$

de donde:

$$V_o = \frac{p}{p_o} \frac{V}{1 + at}$$
 [15]

El valor buscado es:

$$V_{\circ} = \frac{1300}{760} \frac{500}{1 + \frac{80}{273}} = 661,456 \text{ cm}^3$$

§ 244.—Otras formas de la ecuación de estado.—1. Si en la ecuación:

$$p V = p_0 V_0 (1 + \alpha t)$$

Sacamos a fuera del paréntesis; resulta:

$$p V = p_o V_o \alpha \left(\frac{1}{\alpha} + t \right)$$
 [16]

pero:

$$-\frac{1}{a} + t = \frac{1}{273} + t = 273 + t = T$$
 (§[241)

y por tanto se tiene:

$$p V = p_0 V_0 \alpha \cdot T \cdot$$
 [17]

de la que se deducen:

$$V = \frac{p_{\circ}}{p} \cdot V_{\circ} a T$$

$$V_{\circ} = \frac{p}{p_{\circ}} \frac{V}{a T} = \frac{\rho}{\rho_{\circ}} \frac{\sqrt{.273}}{T}$$

2.—El producto p_oV_o α es un valor constante, al que se puede poner en función de la masa m del gas o del número n de moléculas gramos o moles que contiene la masa m.

En efecto, teniendo en cuenta que la densidad del gas a 0° es:

$$\delta \circ = \frac{m}{V_{\circ}}$$

resulta:

$$V_{\circ} = \frac{m}{\delta_{\circ}}$$

luego:

$$p_{\circ}V_{\circ}\;\alpha=m\;\frac{p_{\circ}\;\alpha}{\delta\circ}=m.\;C$$

y la ecuación de estado toma la forma

$$p V = m C T$$
 [18]

donde m es la masa, C una constante propia del gas: $\frac{p_0 \, a}{\delta_0}$, y T la temperatura absoluta.

3.—Forma más general.—Es sabido que el peso molecular es un número que representa aproximadamente la relación entre la masa de la

molécula del cuerpo y la de un átomo de hidrógeno (más rigurosamente se compara con el átomo de oxígeno con valor 16).

Dicho número establecido en base a la hipótesis de Avogadro (volúmenes iguales de gas en las mismas condiciones de temperatura y presión tienen igual número de moléculas), da origen al concepto de molo molécula gramo.

Esta, es simplemente un número de gramos-masa igual al peso molecular de la sustancia.

Así, siendo el peso molecular del oxígeno 32, un mol de oxígeno son 32 gramos de oxígeno.

Siendo M el peso molecular de un gas, en m gramos hay:

$$n = \frac{m}{M}$$
 molécula gramo [19]

Por tanto la masa m es:

$$m = n M$$

Reemplazando este valor en la fórmula [18], resulta

$$p V = n. M C T$$
 [20]

p V = n R T [21]

donde R = MC es una constante universal para todos los gases, cuyo valor es:

R = 0.08209 litro-atmósfera (1)

 $R = 8,3136 \times 107 erg$

La fórmula [21] es la ecuación más general de los gases ideales.

(1) Para el oxígeno: M = 32g; Vo = 22,412 litros y
$$\delta^o = \frac{32\,g}{22,412$$
 litro

Luego:

$$R = MC = M \frac{P_{n}\alpha}{\delta_{0}} = 32 g \frac{1 \text{ atm.}}{32 g} = \frac{1}{32 g}$$

§ 245.—Densidad de los gases.— 1. Relación entre densidades absolutas. Siendo m la masa de un gas y V_{α} su volumen a 0°, la densidad a dicha temperatura es:

$$\delta \circ = \frac{m}{V_{\circ}}$$

En otro estado a presión p, volumen V y temperatura t su densidad será, de acuerdo a la fórmula [16]:

$$\delta = \frac{m}{V} = \frac{m}{\frac{p_{\circ}}{p}} \frac{m}{V_{\circ} (1 + \alpha t)} = \frac{m}{V_{\circ}} \frac{p}{p_{\circ} (1 + \alpha t)}$$

$$\delta = \delta_{\circ} \frac{p}{p_{\circ} (1 + \alpha t)} = \frac{\delta_{\circ} p}{p_{\circ} \alpha T}$$
[22]

2.—Relación entre densidades relativas.—Llamando δ_{o} y δ las densidades de un gas en las condiciones antedichas y siendo δ_{o} y δ' la de un segundo gas tomando como término de comparación, se tiene como valor de la densidad relativa:

$$D = \frac{\delta}{\delta'} = \frac{\delta \circ \frac{p}{p_{\circ} (1 + \alpha t)}}{\delta \circ \frac{p}{p_{\circ} (1 + \alpha t)}} = \frac{\delta \circ}{\delta \circ \prime}$$
[23]

Portanto, el cociente de las densidades de dos gases ideales en las mismas condiciones de presión y de temperatura, es una constante que se llama densidad relativa: D, del primero respecto al segundo.

Esta densidad relativa D se puede determinar como relación de las masas o pesos de volúmenes iguales de los dos gases en igualdad de condiciones de presión y temperatura:

$$D = \frac{\delta}{\delta'} = \frac{m}{m'} = \frac{P}{P'}$$

Generalmente se toma como término de comparación el aire, cuya densidad a 0° y 760 mm de Hg es:

$$\delta'\circ=0.001293\,\frac{\mathrm{g}}{\mathrm{cm}^3}$$

Conocida la densidad relativa al aire, se puede calcular la absoluta a cero grado multiplicándola por 8'0:

$$D = \frac{\delta_0}{\delta_0'} :: \delta_0 = D \cdot \delta_0'$$

Aplicación.—Calcular la masa de un volumen V = 200 cm3 de hidró-

geno a la temperatura $t=80^{\circ}$ y presión p=2.000 mm de mercurio. Sabiendo que la densidad del hidrógeno con relación al aire es: D = 0.06948, se tiene:

$$\delta_0 = D \ \delta_0' = 0.06948 \times 0.001293 = 0.000089837 \frac{g}{cm^3}$$

El volumen reducido a 0° y 760 mm es:

$$V_{\circ} = \frac{p}{p_{\circ}} \frac{V}{1 + \alpha t} = \frac{2000}{760} \cdot \frac{200}{1 + \frac{80}{273}} = 407,05 \text{ cm}^{3}$$

La masa buscada es:

$$m = V_0 \delta_0 = 0.03656 g$$

TABLA XVII

DENSIDAD DE GASES RELATIVA AL AIRE

Argón	1,3796
Cloro	2,486
Helio	0.138
Hidrógeno	0,06948
Nitrógeno	0.9672
Oxígeno	1,1053
CO^2	1,5290

La determinación de estas densidades se hace pesando sucesivamente un balón de experiencia lleno del gas dado primero y lleno de aire en iguales condiciones de temperatura y presión después.

Conociendo el peso del balón vacío, por diferencia se sacan las masas m v m' cuva relación es D.

El problema se complica por efecto de las variaciones de p y de V en el balón de experiencia y aún por la variación del empuje del aire.

Para compensar este efecto se toman siempre dos balones A y B de volúmenes exteriores iguales, usándose uno de ellos como tara; las variaciones de empuje resultan así ejercidas sobre los dos platillos (fig. 465).

Para determinaciones exactas de densidades relativas se emplean el método de Dumas y el de Víctor Mayer, en los que se aplica la ecuación de estado de los gases ideales.

[24]

La densidad absoluta (masa específica) puede hallarse equilibrando el balón A lleno del gas a la presión normal

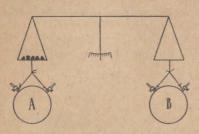


Fig. 465.—Determinación de la densidad de un gas.

y determinando luego el peso del gas extraído al hacer el vacío, disminuyendo su presión al valor p obtenido con la máquina neumática empleada.

Conocido el volumen del balón (se lo pesa vacío y lleno de agua, para esto) y aplicando la ecuación de estado pueden calcularse δ y δ_0 .

 \S 246.—**Termómetro de gas: escala.**—El termómetro de gas es un dispositivo semejante al que indicamos para definir el coeficiente β de dilatación a volumen constante (fig. 462).

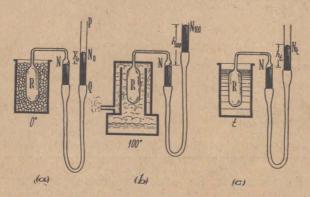


Fig. 466.—Termómetro de gas. Determinación de la constante y de una temperatura.

El índice de estado térmico empleado en él es la variación de la presión de un gas mantenido a volumen constante. La fig. 466 muestra tres esquemas del aparato y la 467 representa un modelo de termómetro de aire de Jolly.

1. Graduación.—Colocado el recipiente en hielo fundente (fig. 466 a) y mantenido el nivel del mercurio en el enrase N, se mide el desnivel ho entre N y No, correspondiente a 0°.

Llevado el recipiente R a la temperatura del vapor de agua en ebullición a la presión normal (100°), se levanta la rama móvil PQ del manómetro, obligando al gas a conservar el volumen inicial.

El desnivel entre el enrase N y el nivel N_{100} en la otra rama es h_{100} (fig. 466 b).

Fig. 467.—Termómetro del aire de Jolly.

Al pasar la temperatura de 0° a 100° centígrados la presión aumentó de: $h_{100} - h_{\circ}$.

Para este termómetro el grado centígrado es la variación de temperatura que produce un aumento de presión igual a la centésima parte de la que se produce al pasar del hielo fundente al vapor de agua a 100°.

A un grado centígrado corresponde la

A un grado centígrado corresponde la variación de presión (en altura de mercurio):

$$\frac{h_{100} - h_{\circ}}{100}$$
 [25]

2.—Determinación de una temperatura.—Colocado el recipiente R en un medio cuya temperatura se desea conocer (figura 466 c), para mantener el volumen constante habrá que mantener un desnivel (levantando el tubo móvil PQ), igual a $h_{\rm t}$.

De acuerdo a la proporcionalidad establecida en la definición que antecede, podemos escribir, llamando t a la temperatura buscada:

$$\frac{h_t - h_o}{t} = \frac{h_{100} - h_o}{100}$$
 [26]

De donde:

$$t = 100 \frac{h_t - h_o}{h_{100} - h_o}$$
 [27]

§ 247.—Termómetro de hidrógeno. Escala normal.—Para determinaciones precisas se emplea el termómetro de hidrógeno, que tiene la ventaja de la constancia de su coeficiente de dilatación, que es igual al del gas perfecto o ideal.

Este termómetro puede servir para temperaturas desde -200° a $+1200^{\circ}$ usando un recipiente de porcelana.

Además, siendo su dilatación unas 200 veces mayor que la del recipiente, se reduce al mínimo la influencia de éste, en los errores de observación.

La escala termométrica normal, fijada por el Comité Internacional de pesas y medidas en 1887, está basada en la dilatación, a volumen constante, de una masa invariable de hidrógeno.

En ella se parte, para 0°, de la presión inicial po equilibrada por una columna h, de mercurio de 1 metro de altura normal (altura a 0, y donde

$$g_{\rm n} = 980,665 \frac{\rm cm}{\rm seg^2}$$

El grado centígrado de esta escala normal, es la diferencia de temperatura que produce una variación de presión del hidrógeno, igual a la centésima parte de la sufrida entre los puntos fundamentales. Teniendo en cuenta que para el hidrógeno

$$\alpha = \beta = \frac{1}{273.03} = 0,0036626$$

podemos dar forma particular a la expresión de la temperatura de la fórmula [27].

De acuerdo con ésta:

$$t = \frac{100}{h_{100} - h_{\circ}}$$
 (h — h_o)

(ho = 100 cm de altura normal)

pero por la definición del coeficiente de dilatación, $\beta = \alpha$:

$$\alpha = \frac{h_{100} - h_{\circ}}{h_{\circ} \times 100}$$

de donde:

$$\frac{100}{h_{100} - h_{\circ}} = \frac{1}{\alpha \cdot h_{\circ}}$$

y sustituyendo en el valor de t, se tiene:

$$\dot{t} = \frac{h_t - h_o}{\alpha \times h_o} = \frac{1}{\alpha} \cdot \frac{h_t - h_o}{h_o}$$
 [28]

y, finalmente:

$$t = 273,03 \frac{h_t - h_o}{h_o}$$
 [29]

Reducción a la temperatura normal.—Las indicaciones dadas por los termómetros a mercurio o a otros líquidos deben reducirse a las de la

Como cada líquido tiene sus coeficientes de dilatación, y otro tanto sucede con los recipientes de vidrio en que están contenidos, la reducción debe hacerse teniendo en cuenta ambos factores de corrección.

Los manuales tienen fórmulas y tablas para termómetros de mercurio, alcohol, tolueno y pentano, que son los líquidos termométricos más usados.

Siendo t la temperatura centígrada leída en el termómetro a líquido, la correspondiente en la escala normal de hidrógeno, se tiene:

$$t_{H} = t + C$$
 [30]

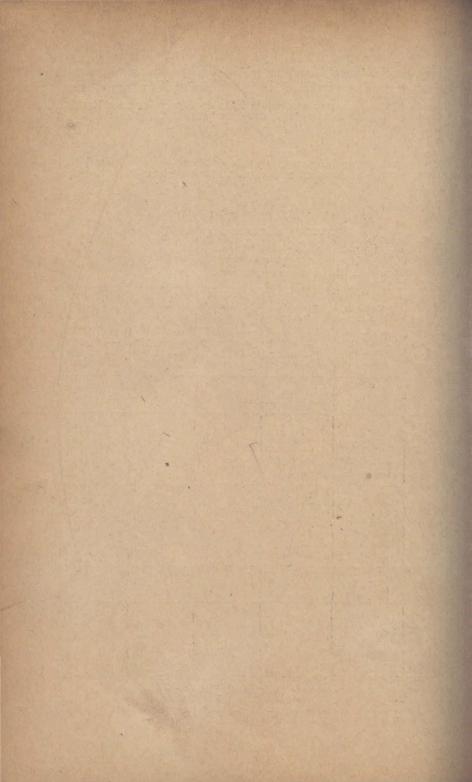

Algunos valores de la corrección están dados en la tabla que sigue; en la que, para alcohol, toluol y pentano figuran directamente los valores de th.

TABLA XVIII REDUCCIÓN DE TEMPERATURAS Valores de C

	LIQUIDOS						
t - 75° - 30° - 20° - 10°	WERCT Vidrio de Jena	Vidrio duro francés + 0,290 + 0,172 + 0,073	Alcohol 67,40° 27,72° 18,66 9,43	Toluol 60,46° 25,10° 16,90 8,54	Pentano - 75,32° - 31,56° - 21,27° - 10,77		
00	0	0	0	0	0		
10° 20° 30° 40° 50°	- 0,024 - 0,035 - 0,038 - 0,034 - 0,026	- 0,052 - 0,085 - 0,102 - 0,107 - 0,103					
60°	0,16°	0,090°					
70° 80° 90°	$\begin{array}{c c} - & 0,008 \\ - & 0,001 \\ + & 0.002 \end{array}$	$\begin{array}{c c} -0.072 \\ -0.050 \\ -0.026 \end{array}$					
100°	0,000	0,000					
200° 300° 400° 500° 600°	$\begin{array}{c c} - & 0.63 \\ - & 4.40^{\circ} \\ - & 11.50^{\circ} \\ - & 23.00^{\circ} \\ - & 41.10^{\circ} \end{array}$	0,125					

Entre 0° y 100° el termómetro a mercurio con vidrio de Jena se aleja poco de la escala normal.

Nota.—Además de la escala normal, se usa otra escala llamada termodinámica, cuyas temperaturas difieren muy poco de los valores de T $_{
m H}$ = 273 + t $_{
m H}$

CAPITULO XX

CALORIMETRÍA

§ 248.—Cantidad de calor - Calor específico.—Cuando queremos elevar la temperatura de un cuerpo cualquiera, lo ponemos en contacto o en las proximidades de otro cuerpo

cuya temperatura sea mayor.

Solemos emplear cuerpos en que la temperatura no varía mayormente, aunque los utilicemos para elevar la de muchos otros. Por ejemplo, el carbón encendido de una hornalla o el gas en combustión que sale de un mechero.

A éstos los llamamos fuentes caloríficas.

Observamos que, en contacto con la misma fuente y en las mismas condiciones, distintos cuerpos o distintas masas de una misma sustancia tardan diferentes tiempos en experimentar el mismo aumento de temperatura. Decimos entonces, que los cuerpos que se calientan reciben calor de la fuente más caliente (1).

Cuando colocamos al cuerpo en contacto con otro más frío

y disminuye de temperatura, diremos que cede calor.

Realicemos la experiencia tomando un cuerpo cualquiera y colocándolo en un recipiente aislado térmicamente del exterior, en contacto con hielo sin agua, a 0° C. Si su temperatura es mayor que 0°, observaremos que el cuerpo se enfría hasta alcanzar el estado térmico del hielo, y, además, una parte del hielo se funde.

Repitiendo la misma experiencia con el mismo cuerpo a igual temperatura inicial, comprobaremos que funde siempre

la misma cantidad de hielo.

Si luego colocamos dos cuerpos iguales a la misma temperatura inicial, la cantidad de hielo fundido será doble de la que se fundía con uno solo.

Comprobaremos así, que estamos en condiciones de definir la igualdad y la suma de las cantidades de calor, en base a la medida de la cantidad de hielo fundido en cada caso.

⁽¹⁾ Podría decirse que el cuerpo más frío cede frío a la fuente, y la teoría tendría la misma validez.

Concluímos, pues, que la cantidad de calor es una mag-

nitud.

Tomando cuerpos de la misma sustancia, pero de distinta masa, a igual temperatura inicial, observamos que las cantidades de hielo fundido (o sea las cantidades de calor cedido) son proporcionales a las masas.

Una misma masa, a diversas temperaturas iniciales, funde cantidades de hielo proporcionales a las temperaturas ini-

ciales.

Enunciamos la siguiente ley: la cantidad de calor que cede un cuerpo al enfriarse, desde t° hasta 0°, es proporcional a la masa del cuerpo y a la temperatura inicial t°.

$Q = c \cdot m \cdot t_0$

El factor de proporcionalidad c se llama calor específico medio entre cero y t°, y es aproximadamente constante para cada sustancia.

En virtud de esa definición, si el cuerpo de masa m pasa de la temperatura t₁ a la temperatura t₂, ganará una cantidad de

calor

Fig. 468.—Comprobación de que la capacidad calorifica depende de la sustancia.

$$Q=cmt_2-cmt_1\\$$

es decir:

$$Q = c \cdot m \cdot (t_2 - t_1)$$
 [2]

Luego, la cantidad de calor que recibe un cuerpo de calor específico c, cuando su temperatura pasa de t₁ a t₂, es proporcional a la masa, al aumento-de la temperatura y al calor específico de la sustancia.

Que la cantidad de calor depende de la sustancia, a igualdad de las demás condiciones, se realiza con el aparato de la figura 468, con el cual se comprueba que varios cilindros metálicos de distintas sustancias a la misma temperatura inicial, funden cantidades diferentes de un bloque de cera.

§ 249.—Calor específico - Caloría - Capacidad calorífica.— De la fórmula [2] del párrafo anterior deducimos:

$$c = \frac{Q}{m (t_2 - t_1)}$$
 [3]

que nos dice que: el calor específico medio entre t_1 y t_2 grados, es la cantidad media de calor necesario para elevar en un grado la temperatura de la unidad de masa de sustancia.

Tomaremos como unidad para medir cantidades de calor la pequeña caloría media (cal), que es el calor específico medio del agua entre cero y cien grados, o sea, es la centésima parte de la cantidad de calor necesario para calentar un gramo de agua entre cero y cien grados centígrados.

Si en lugar de un gramo tomamos un kilogramo, tendremos la gran caloría media (Cal), que es entonces igual a 1 000 pequeña caloría media.

Siendo la temperatura un número, el calor específico que-

dará expresado en:

$$[c] = \frac{cal}{g}$$
 [4]

$$[c] = \frac{Cal}{Kg}$$
 [5]

La cantidad de calor necesario para elevar en un grado la temperatura de la unidad de masa de una sustancia a una temperatura dada, se llama calor específico a esa temperatura. Así, por ejemplo, el calor específico a 15° C es la cantidad de calor necesario para calentar 1 g de sustancia desde 14½° C a 15½° C. Como unidades para medir cantidades de calor, suele tomarse la caloría a 0° y la caloría a 15°, cuyas relaciones con la caloría media son las siguientes:

$$c_{15}=0.9976~c_{\mathrm{m}}$$
 (Caloría de Bunsen) [6]

En general, la caloría a 15° se llama caloría normal. Las relaciones halladas entre las diversas calorías varían con los autores:

TABLA XIX

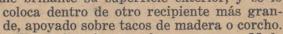
CALORES ESPECÍFICOS DEL AGUA

Temperaturas	Rowland	Day	Pernet
5°	1,0056	1,0054	1,0042
10°	1,0026	1,0019	1,0019
15°	1,0000	1,0000	1,0000
2.00	0,9977	0,9979	0,9983
25°	0,9963	0,9972	0,9972
30°	0,9958	0,9969	0,9967
35°	0,9963	0,9981	0,9969
	Es mínimo a	la temperatura:	
	29°	28°	32°

Los calores específicos de casi todos los sólidos y líquidos son menores que la unidad. Veamos algunos valores:

TABLA XX
CALORES ESPECÍFICOS

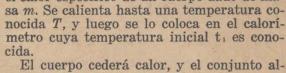
Sustancia	c _m entre 0° y 100°
Acero	0,115
Aluminio	0,220
Cobre	0,094
Mercurio	0,033
Plata	0,056
Plomo	0,031
Cinc	0,094
Hielo	0,50
Vidrio	0,20
Aceite de oliva	0,40
Acido sulfúrico	0,33
Alcohol	0,58
Amoníaco	1,00
Éter	0,54
Petróleo	0,50

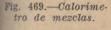

Se llama capacidad calorífica de un cuerpo de masa M y calor específico c, al producto Mc. Es la cantidad de calor necesario para elevar en un grado la temperatura del cuerpo.

§ 250.—Medición de cantidades de calor - Calorímetros de mezclas.—Los aparatos destinados a la medida de cantidades de calor se llaman calorímetros. Distinguiremos fundamentalmente de dos tipos: de mezclas y de hielo.

El calorímetro de las mezclas está formado por un recipiente de latón, aislado térmicamente del exterior, de la mejor

manera posible (fig. 469).


Para ello se pule brillante su superficie exterior, y se lo



En su interior se coloca una masa M de agua; lleva, además un agitador y un termómetro sensible.

Supongamos que se trate de determinar

el calor específico de un cuerpo dado de masa m. Se calienta hasta una temperatura conocida T, y luego se lo coloca en el calorímetro cuya temperatura inicial ti es conocida.

canzará, después de cierto tiempo, una temperatura final t.

De acuerdo con la fórmula [2], la cantidad de calor recibido por el cuerpo es:

$$Q_1 = m \cdot c (t_f - T)$$
 [8]

en la cual c es el calor específico del cuerpo.

Por otra parte, ha variado también la cantidad de calor en el calorímetro. Suponiendo que el recipiente, el termómetro y el agitador no absorben calor, la cantidad de calor recibido

$$Q_2 = Mc_0 (t_r \mapsto t_i)$$
 [9]

siendo co el calor específico del agua.

Como el sistema formado por el cuerpo y el calorímetro no recibe ni pierde calor del exterior, la suma de los calores [8] y [9] debe ser nula:

$$Q_1 + Q_2 = mc (t_t - T) + Mc_0 (t_t - t_i) = 0$$
 [10]

o sea:

$$-\operatorname{mc} (t_r - T) = \operatorname{Mco} (t_r - t_i)$$

cambiando de signo:

me
$$(T - t_t) = Me_0 (t_t - t_i)$$
 [11]

y el calor específico

$$c = \frac{Mc_0 (t_r - t_i)}{m (T - t_r)}$$
[12]

Como el calor específico del agua puede tomarse igual a l, esta fórmula puede escribirse:

$$c = \frac{M (t_r - t_i)}{m (T - t_f)}$$
 [12]

Se obtiene así el calor específico buscado.

En la práctica se debe tener en cuenta que el recipiente calorimétrico, el agitador y el termómetro absorben calor.

Si son: m_c y c_c masa y calor específico del recipiente

m_a y c_a los del agitador

m_t y c_t los del termómetro, entonces la fórmula

[9] se transforma en:

$$\mathbf{Q}_2 = \mathbf{M}\mathbf{c}_0 \ (\mathbf{t}_{\mathrm{f}} - \mathbf{t}_{\mathrm{i}}) + \mathbf{m}_{\mathrm{c}}\mathbf{c}_{\mathrm{c}} \ (\mathbf{t}_{\mathrm{f}} - \mathbf{t}_{\mathrm{i}}) + \mathbf{m}_{\mathrm{a}}\mathbf{c}_{\mathrm{a}} \ (\mathbf{t}_{\mathrm{f}} - \mathbf{t}_{\mathrm{i}}) + \mathbf{m}_{\mathrm{t}}\mathbf{c}_{\mathrm{t}} \ (\mathbf{t}_{\mathrm{f}} - \mathbf{t}_{\mathrm{i}})$$

o sea:

$$Q_2 = (Mc_0 + m_cc_c + m_ac_a + m_tc_t) (t_f - t_i)$$
 [13]

Esta expresión nos dice que la fórmula [9] es válida si, en lugar del producto Mc_o , ponemos la suma de los productos masa por calor específico de todos los elementos que integran el calorímetro. Esta suma se denomina capacidad calorífica o equivalente en agua, pues expresa la cantidad de gramos de agua que son necesarios para absorber la misma cantidad de calor que ese conjunto de cuerpos, por cada grado de variación de temperatura (admitiendo que $c_o = 1$).

Ejemplo:

Se tiene un calorímetro de latón con 400 g de agua a 17° C. y se coloca en él un cuerpo de cobre de 65 g a la temperatura de 100° C. Calcular el calor específico del cobre si la temperatura final es 18° 37, sabiendo que el calorímetro y agitador son de latón y pesan 280 gr.

Se supone despreciable el calor absorbido por el termómetro.

Solución: de las tablas el calor específico del latón: $c_0 = 0.097$

luego:

$$M_{\text{a}} = 400 \text{ g}$$
 $m_{\text{c}} c_{\text{c}} + m_{\text{a}} c_{\text{a}} = 280 \times 0.097 = 28 \text{ g}$
 $\overline{M} = 428 \text{ g}$

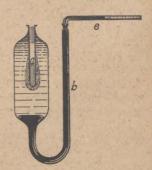
Aplicando [12]
$$c = \frac{428 \times (180,37 - 170,2)}{65 \times (1000 - 180,37)} = 0.094 \frac{\text{cal}}{\text{g}}$$

En las determinaciones de precisión, es necesario tener también en cuenta que el calorímetro, a pesar de su aislación térmica, intercambia calor con el ambiente. Para evitar su influencia se efectúan correcciones adecuadas.

§ 251.—Calorímetros de hielo.—El principio de la aplicación de los calorímetros de hielo ha quedado expuesto al refe-

Fig. 470.—Calorimetro de hielo.

rirnos al concepto de cantidad de calor: se trata de medir cantidades de calor por la masa de hielo fundido. Para ello, sabemos que cada gramo de hielo necesita, para fundirse a cero grado, 80,025 calorías. Los distintos calorímetros de hielo se diferencian en la manera cómo se mide la masa de hielo que se funde.


En el tipo clásico de Lavoisier y Laplace (fig. 470) se recoge direc-

tamente el agua producto de la fusión.

Se evita la llegada de calor del ambiente ro-

deando al hielo que constituye el calorímetro propiamente dicho con una capa de hielo, como se aprecia en la fig. 470.

En el calorímetro de Bunsen se determina el hielo fundido por la varia- Fig. 471.—Calorimetro de ción de volumen: cada gramo de hielo que se funde experimenta una dismi-

Bunsen.

nución de volumen de 0,09070 cm3, y recíprocamente, cada cm3 de disminución de volumen corresponde a 11,025 gr de hielo fundido, o sea $80,025 \times 11,025 = 882,3 \frac{\text{cal}}{\text{cm}^3}$

En la figura se puede observar la construcción de un calorímetro de Bunsen. El tubo a, donde se colocan los cuerpos cuyo calor específico se desea medir, está rodeado por otro tubo de mayor diámetro soldado en su parte superior. Entre los des hay una masa de agua, de la cual una parte se congela colocando una sustancia refrigerante en a. En la parte inferior hay mercurio, que continúa por el tubo lateral b y en el capilar calibrado e. Las variaciones de volumen del hielo h se miden por el corrimiento del índice de mercurio en el capilar. Si se corre a divisiones y el volumen que corresponde a cada una es v, la variación total será:

$$\Delta v = nv$$
 [14]

Como a cada cm 3 corresponden 882,3 cal, al volumen Δ v corresponderá una cantidad de calor:

$$Q = 882,3 . \Delta v = 882,3 n . v (cal)$$
 [15]

§ 252.—Calor específico de gases.—En los gases debemos distinguir dos calores específicos: a volumen y a presión constante.

En un caso es la cantidad de calor necesaria para elevar en 1º la temperatura de la unidad de masa manteniendo constante el volumen. En el otro, manteniendo constante la presión. Los designaremos con las letras c_v y c_p .

Siempre se verifica que:

$$c_p > c_v \tag{16}$$

y es fácil comprender la razón: imaginemos un recipiente que contiene 1 g de un gas cualquiera a la temperatura t y presión p. Si lo calentamos hasta t+1 grado, manteniendo constante el volumen, debemos proporcionarle al gas una cantidad de calor que mide su calor específico a esa temperatura.

En el estado final, la presión habrá aumentado, según se ha visto al estudiar la dilatación de gases a volumen constante.

Si, en cambio, calentamos el gas manteniendo constante la presión, debemos aumentar su volumen, y al llegar a la temperatura t+1 habremos entregado una cantidad de calor que mide el calor específico c_p a presión commante. Habrá sido necesario realizar un trabajo exterior, al dilatar el gas venciendo la presión exterior, y para ello debe proporcionársele una cantidad de calor igual a la diferencia entre ambos calores es-

pecíficos. Veremos en el capítulo siguiente cómo se calcula esa diferencia.

Los calores específicos c_p y c_v son independientes de la presión y la relación:

$$\frac{c_p}{c_r} = \varkappa$$
 [17]

es una constante para cada gas, que, por lo dicho, será mayor que la unidad.

Experimentalmente es más sencilla la determinación de c_p (a presión constante), y conociendo \varkappa determinado por otros métodos, se calcula c_v . Para esta determinación se hace circular

el gas por un primer recipiente donde se calienta a la temperatura T (figura 472), y luego, por el serpentín del calorímetro, cuya temperatura inicial es to. Al final, cuando ha circulado una masa m de gas, la temperatura dei calorímetro es t_{f.} Llamando M al equivalente total en agua del calorímetro y el serpentín, aplicamos la ecuación calorímetra [12], pero, debemos tener en cuenta que la primera par-

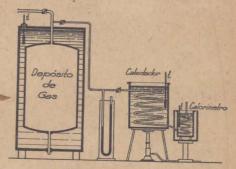


Fig. 472.—Instalación para medir calor específico de gases a presión constante.

te de la corriente de gas salió del calorímetro a su temperatura inicial toy la última a la temperatura final to Todo ocurre como si, en el calorímetro, toda la masa de gas se hubiera enfriado desde su temperatura inicial T a una temperatura final.

$$t'_{t} = \frac{t_{0} + t_{t}}{2}$$
 [18]

Aplicando la fórmula [12']

$$e_p = \frac{M (t_f - t_0)}{m (T - t'_f)}$$
 [19]

Para el aire se ha obtenido:

$$c_{\nu}=~0.2375~\frac{\mathrm{cal}}{\mathrm{g}}$$
 ; $c_{\nu}=0.1690\frac{\mathrm{cal}}{\mathrm{g}}$; $\varkappa=\frac{c_{\nu}}{c_{\nu}}=1.40$

Para el hidrógeno:

$$c_p=3{,}41~\frac{\mathrm{cal}}{\mathrm{g}}$$
 ; $c_v=2{,}42~\frac{\mathrm{cal}}{\mathrm{g}}$; $\varkappa=1{,}407$

CAPÍTULO XXI

EQUIVALENTE MECÁNICO DEL CALOR CONSERVACIÓN DE LA ENERGÍA

§ 253.—Equivalente mecánico del calor - Principio de equialencia.—En numerosas experiencías comprobamos que a la ealización de un trabajo corresponde la aparición de una canidad de calor. En el eslabón neumático (fig. 473) una rápida

compresión del gas, aumenta la temperatura y llega a producir la inflamación de un trozo de yesca

colocado en el pistón.

Frotando dos trozos de madera, puede llegar a producirse su combustión. En ambos casos se ha obtenido calor a expensas del trabajo de una fuerza.

Claro es que debe distinguirse entre el calor que se produce por el trabajo y el que se genera por la combustión una vez que ésta se ha iniciado. Ahora nos interesa sólo el primero, y para poderlo calcular nos vamos a referir exclusivamente a aquellas experiencias en que el cuerpo o sistema de cuerpos vuelve al estado inicial. Así quedará excluído, por ejemplo, el caso del fósforo que frotado se enciende y desarrolla calor, pero en el estado final constituye un sistema de cuerpos completamente distinto al del estado inicial, pues queda un residuo sólido: parte se ha transformado en gas y se ha combinado con el oxígeno del aire que lo rodea.

La experiencia comprueba que, cuando el cuerpo o sistema de cuerpos, después de experimentar una serie de transformaciones, vuelve a su estado inicial, el trabajo exterior realizado es proporcional a la cantidad de calor des-

arrollado.

Por lo tanto, si se ha realizado un trabajo L y se ha desarrollado una cantidad de calor Q, se verifica:

Figura 473. — Eslabón neumático. siendo J una constante universal que sólo depende del sistema de unidades, y se llama: equivalente mecánico del calor. En unidades técnicas es:

$$J = 427 \frac{Kgm}{Cal}$$
 [2]

Veamos otro ejemplo: imaginemos un volante que gira rozando contra un freno. La fuerza de frotamiento realiza trabajo y se produce un calentamiento. Si lo detenemos y dejamos enfriar, el sistema volverá a la temperatura inicial y con ello estará exactamente en las condiciones iniciales. Las transformaciones que se han producido consistieron: en la realización de un cierto trabajo de rozamiento L y la producción de una cantidad de calor Q. El principio de equivalencia dice que ese trabajo y la cantidad de calor son proporcionales.

§ 254.—Determinación del equivalente mecánico del calor-Método de Joule.—Numerosas experiencias se han realizado para determinar el equivadente mecánico del calor. Entre las primeras se cita la de Rumford que en 1798 determinó el calor producido al taladrar cañones, para lo cual sumergió en agua el taladro y la pieza a taladrar. Con una valuación aproximada del trabajo realizado por el caballo que movía el taladro obtuvo el valor:

$$J = 570,9 \frac{Kgm}{Cal}$$

Entre los métodos ya más exactos figura en primer término el del ingeniero inglés Joule quien utilizó el aparato de la figura 474. Se trata de transformar trabajo en calor y medir ambas magnitudes. Para ello tomó un calorímetro de metal, dentro de cual colocó un eje con un sistema de aletas laterales que se movían entre otras fijas al recipiente. En la parte superior de eje, un rodillo de madera llevaba arrollados dos hilos de cuyos extremos pendían dos pesos iguales P, que al caer provocaban la rotación del eje. El trabajo de caída se transforma en calor por el frotamiento de las paletas con el agua del calorímetro.

La cantidad de calor producido se calcula conociendo la masa M de agua equivalente al calorímetro con las paletas y el líquido contenido y las temperaturas inicial t_0 y final t_1 .

$$Q = M (t_f - t_o)$$
 [3]

El trabajo que ha producido esa cantidad de calor será el de los dos pesos P que descienden de una altura h:

$$L' = 2 Ph$$
 [4]

Pero se debe descontar el trabajo que se pierde por los rozamientos en las poleas y el eje y, además, el que se emplea en proporcionar a los pesos la energía cinética con que llegan al suelo.

Para establecer el valor de este trabajo se desvinculan las paletas del cilindro sacando una clavija C (fig. 474 b) y se arro-

la el hilo de manera que al bajar una pesa la otra suba.

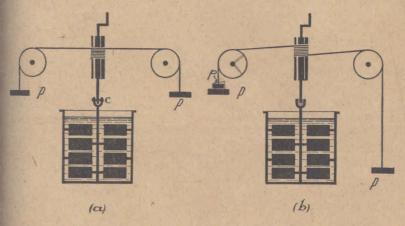


Fig. 474.—Método de Joule para la determinación del equivalente mecánico del calor.

Las dos pesas iguales P equilibran sus momentos respecto al eje de rotación.

Agregando entonces una pesa p se producirá el movimiento

del sistema.

Graduando p de modo que la velocidad adquirida por las pesas P al llegar al suelo sea igual a la que adquirirían en el caso anterior, podemos decir que el trabajo p. h mide la suma de los trabajos de las fuerzas de roce y del gastado en acelerar las pesas P en cada caída.

El trabajo transformado en calor es, para cada descenso:

$$2 \text{ Ph} - \text{ph} = (2 \text{ P} - \text{p}) \cdot \text{h}$$
 [5]

Para tener una elevación apreciable de temperatura hay que producir varias caídas sucesivas, cuidando de sacar la clavija C cuando se levantan las pesas con la manivela. Siendo n el número de caídas, se tiene:

$$J = \frac{L}{Q} = \frac{n (2 P - p) h}{M (t_f - t_0)}$$
 [6]

Esta experiencia se ha repetido con ligeras variantes. Rowland producía la rotación del calorímetro permaneciendo fijas las paletas interiores; Hirn determinó el calor desarrollado en el choque de dos cuerpos inelásticos, y Mayer hizo el cálculo en base a los calores específicos de los gases.

De este conjunto de determinaciones resulta como más pro-

bable el valor:

$$J = 427 \frac{Kgm}{Cal}$$
 [7]

En unidades c. g. s.:

$$J = 4.184 \frac{\text{joule}}{\text{cal}}$$
 [8]

Aplicación: Un vehículo de 2000 Kgr. marcha a 60 Km/hora. Calcular el calor que se desarrolla en los frenos al detenerlo, suponiendo que es el único lugar donde se originan resistencias al movimiento.

Solución:

$$L \, = \, E_{c} \! = \, \, \frac{1}{2} \, \, M v^{2} = \, \frac{1}{2} \, \, \frac{P}{g} \, \, v^{2} \, = \, 28300 \, \, Kgm.$$

$$Q = \frac{L}{J} = \frac{28300}{427} = 66,3 \text{ Cal} = 66300 \text{ cal}$$

§ 255.—Cálculo de la diferencia c_p — c_v. — Hemos dicho ya que la diferencia entre los calores específicos de los gases a presión constante, y

a volumen constante, se debe al trabajo exterior que se tiene que realizar calentando a presión constante. Imaginemos 1 g de gas a la presión p en el recipiente de volumen V cerrado con un embolo de superficie S. Si lo calentamos de modo que su temperatura

aumente en 1 grado, el volumen experimenta un au-

Fig. 475.

mento.

 $\Delta V = V \cdot \alpha$

La fuerza f = p S que sostiene el émbolo, realizará un trabajo:

$$L = f.e = p. s. e = p \Delta V$$

o sea:

$$L = p \ V \ \alpha \tag{10}$$

Pero ese trabajo corresponde a la diferencia entre los calores específicos c_n y c_{v_2} luego:

$$J(c_n - c_v) = p V \alpha$$
 [11]

Si elegimos p = p_ = 760 mm de Hg y V = V_ = volumen específico en condiciones normales, o sea, a 0° y 760 mm de presión, tendremos que:

J.
$$(c_n - c_v) = p_0 V_0 \alpha$$
 [12]

Para el aire; siendo:

$$\begin{split} \mathbb{V}_{\circ} &= \frac{1}{0,001293} \frac{\text{cm}^3}{\text{g}} \; ; \; \alpha = \frac{1}{273} \; ; \; p_{\circ} = 1033 \frac{\text{gr}}{\text{cm}^2} \; ; \\ & J = 4,184 \frac{\text{Joule}}{\text{cal}} = 4,184 \times 10^7 \frac{\text{erg}}{\text{cal}} \\ & c_p - c_v = \frac{1033 \times 981 \times 10^{-7}}{4,184 \times 0,001293 \times 273} = 0,0686 \end{split}$$

De los valores dados en el § 252 resulta:

$$c_{\rm p} - c_{\rm v} = 0.2375 - 0.1690 = 0.0685$$

§ 256.—Teoría mecánica del calor.—Una de las consecuencias más importantes de la determinación del equivalente mecánico del calor es el apoyo que aporta a la teoría mecánica del calor. Hasta fines del siglo XVIII se admitía la existencia del flúido calórico. Es decir, el calor debía ser un flúido compresible y sin peso cuya manifestación exterior sería la temperatura. Hasta la calorimetría no hay inconveniente en admitirlo así. Las experiencias de producción de calor por frotamiento introducen una dificultad que la teoría salvaba, admitiendo que en el frotamiento los cuerpos se pulverizan, y esa materia en estado pulverulento posee mayor capacidad calorífica, por lo cual, sin variar la cantidad de calor, se obtiene un aumento de temperatura.

En 1799 Davy realizó una experiencia decisiva en contra de esta teoría: frotó dos trozos de hielo bajo la campana de una máquina neumática enfriada por debajo de cero grado y así se fundieron ambos trozos de hielo cuya temperatura inicial era —2° C, obteniendo agua a +2° C. Era evidente que, en este caso, no cabía la explicación anterior, pues el resultado del frotamiento era la producción de un cuerpo de mayor capacidad calorífica (el calor específico del hielo es 0,5 y el del agua 1) y al mismo tiempo un aumento de temperatura.

Resulta de estas experiencias y de las que se utilizaron para determinar el equivalente mecánico del calor que puede establecerse una estrecha vinculación entre calor y energía mecánica. Según la teoría mecánica del calor que actualmente aceptamos, los fenómenos térmicos consisten en modificaciones

de la energía mecánica de las moléculas de los cuerpos.

En los gases, de acuerdo con lo que llamamos la teoría cinética de los gases, admitimos que sus moléculas se encuentran animadas de movimientos de traslación rectilíneos, chocando entre sí y con las paredes del recipiente. La presión es el resultado de los choques de las moléculas con las paredes. Se admite que, en condiciones normales, el volumen de las moléculas es prácticamente nulo comparado con el recipiente en que se encuentran contenidas, o sea que sus diámetros son nulos comparados con las distancias medias entre moléculas (libre camino medio).

Bestica!!

Se demuestra, en base a estas hipótesis, que la presión

Se demuestra, en base a estas hipótesis, que la presión que el gas ejerce sobre las paredes es proporcional a la energía cinética media de traslación de las moléculas contenidas en la unidad de volumen. Llamando energía cinética media a la suma de la energía cinética de todas las moléculas en un instante dado.

dividida por el número total de moléculas.

Se admite que, al modificar la temperatura, se modifica la energía cinética de las moléculas del gas y que, en dos gases diferentes a igual temperatura, la energía cinética media de traslación de las moléculas es la misma.

Por eso al mezclarlos a igual temperatura se obtiene una masa de gas también a la misma temperatura, pues se producen choques elásticos de moléculas de igual energía cinética media, aunque sus masas sean diferentes.

Proporcionar calor al gas equivale a proporcionar energía cinética a sus moléculas, y aumentar su temperatura equivale

a aumentar esa energía.

A temperatura constante, la energía no varía, y si disminuímos el volumen a la mitad, el número de choques contra las paredes se duplica, y, por lo tanto, se duplica la presión (Ley de Boyle).

Esta imagen mecánica del gas explica también por qué

ocupa todo el volumen del recipiente que lo contiene.

La teoría cinética de los gases explica todas las leyes de los gases, pero admitiendo que las moléculas son puntos materiales; por eso se explica también que la ley de Boyle-Mariotte, válida para los gases ideales, pierda validez en los gases reales muy comprimidos, pues en ese caso las moléculas están muy próximas y su diámetro no es despreciable comparado con las distancias que las separan.

Las conclusiones de esta teoría concuerdan muy bien con

los resultados experimentales.

El número de moléculas contenido en una molécula gramo de cualquier gas es:

$$N = 60,6 \times 103$$
 [13]

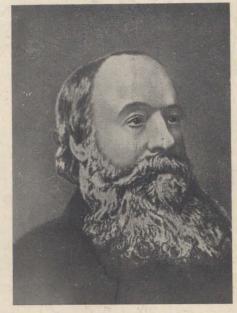
(Número de Avogadro).

Para los líquidos y sólidos vale también la teoría mecánica del calor, con la diferencia que en ellos no es válida la imagen

SADI CARNOT (1796-1832)

Genial físico francés, que a la edad de 28 años, descubrió la ley que rige la transformación del calor en trabajo, enunciando el llamado: Segundo principio de la termodinámica.

Su publicación "Reflexiones sobre la potencia motriz del fuego y sobre las máquinas aptas para desarrollar esta potencia"; estableció las condiciones ideales del funcionamiento de las máquinas térmicas para obtener el máximo rendimiento, dando origen al perfeccionamiento de los dispositivos industriales al par que abría nuevos horizontes a la física teórica.


JAMES PRESCOTT JOULE (1818-1889)

Físico inglés, cuyos trabajos contribuyeron en forma decisiva al establecimiento del principio de conservación de la energía.

Estudió química con Dalton y, en vista de su entusiasmo por el estudio, su padre, adinerado cervecero de Manchester, le construyó un laboratorio particular junto a su negocio.

Determinó el equivalente mecánico del calor y descubrió la ley del calentamiento de los conductores por la corriente eléctrica.

En colaboración con Lord Kelvin investigó las propieda des térmicas de los gases; rea-

lizó importantes trabajos sobre magnetismo y fué el primero en probar experimentalmente la equivalencia de diversas formas de energia. BIBLIOTECA NACIONAL DE MAESTROS de las moléculas infinitamente pequeñas con respecto a la dis-

tancia que las separa.

Admitimos también para estos cuerpos que el calor se transforma en energía mecánica molecular, pero en los sólidos, como cada átomo ocupa una posición bien determinada, esa energía es de naturaleza vibratoria. Cada uno oscila alrededor de su posición de equilibrio con una energía que depende de la temperatura.

§ 257.—Imposibilidad del móvil perpetuo de primera especie.—El principio de equivalencia, representado por la fórmula [1]: JQ = L, se aplica a todo sistema que haya recorrido un ciclo cerrado, o sea que vuelva a las condiciones iniciales. Quiere decir que, en esas condiciones, para que sea Q = 0, debe ser L = 0, y recíprocamente. Por lo tanto, es i m p o s i b l e construir una máquina térmica tal que, después de recorrer un ciclo cerrado, haya producido como única modificación la realización de un trabajo exte-

Un motor en esas condiciones se denomina móvil perpetuo

de primera especie.

Se lo diferencia del movil perpetuo de segunda especie, que es aquel que funciona produciendo trabajo y quitando calor a una única fuente de calor. El segundo principio de la Termodinámica, que no estudiaremos en este libro, expresa la imposibilidad de la existencia de un móvil en tales condiciones, pues para que funcione una máquina térmica es necesario que tome calor de una fuente caliente y entregue la parte que no se transforma en trabajo, a otra fuente más fría.

Por ello es imposible construir un navío que camine enfriando el agua del mar.

§ 258.—Principio de conservación de la energía.—Hemos comprobado la equivalencia entre calor y trabajo cuando el sistema vuelve al estado inicial (ciclo cerrado).

La fórmula [2] podemos escribirla así:

$$JQ + L = 0$$

y es válida si atribuímos signo positivo al calor Q que el sistema recibe y negativo en caso contrario, y signo positivo al trabajo cuando las fuerzas del medio exterior realizan trabajo venciendo a las fuerzas exteriores del sistema.

(Por ejemplo, si se trata de un gas que se comprime, la pre-

sión exterior realiza trabajo positivo).

Cuando el sistema pasa de un primer estado A a otro estado B, distinto del anterior, la suma JQ + L tendrá un valor determinado que, como veremos, no depende del camino seguido

en la transformación.

Con un ejemplo entenderemos fácilmente cómo se puede pasar de un estado a otro por varios caminos: imaginemos que tenemos un dm³ de gas a 0° y 760 mm de presión y lo queremos llevar a ocupar 1 m³ a 100° C de temperatura. (La presión final tendrá un valor que podemos calcular aplicando la ecuación de estado de los gases perfectos).

Un camino a seguir sería el siguiente: expandir primero el gas a temperatura constante hasta alcanzar el volumen final y luego calentar a volumen constante hasta que la temperatura

sea de 100° C.

Otro camino podría consistir en calentar primero hasta 100° sin modificar el volumen y expandir luego a temperatura constante.

Se demuestra que, cualquiera que sea el camino seguido para pasar del estado inicial al estado final, la suma total J Q + L es la misma, aunque en general cada uno de los términos Q y L separadamente sea distinto. Es decir, si Q_1 y L_1 son los valores del calor y el trabajo recibidos por el sistema siguiendo el primer camino, y Q_2 , L_2 siguiendo el segundo, se verifica que:

$$J Q_1 + L_1 = J Q_2 + L_2$$

La demostración no es difícil; basta imaginar una transformación que lleve al sistema del estado final nuevamente al estado inicial; si en ella los valores de calor y trabajo recibidos son respectivamente Q_1 y L_{θ_1} como esta transformación forma con cualquiera de las anteriores un ciclo cerrado debe verificarse la fórmula [2], o sea:

$$(J Q_1 + L_1) + (J Q_3 + L_3) = 0$$
 [14]

y

$$(J Q_2 + L_2) + (J Q_3 + L_3) = 0$$
 [15]

lo cual sólo se cumple si:

$$J Q_1 + L_1 = J Q_2 + L_2$$
 [16]

como deseábamos demostrar.

Luego decimos: cuando un sistema pasa de un estado inicial A a otro estado final B, el valor de la suma:

$$JQ + L = U$$
 [17]

sólo depende de los estados inicial y final del sistema.

El valor U representa la variación de energía interna del sistema.

Por ejemplo: si tenemos un dm3 de aire a 0°C de temperatura y presión 1033 $\frac{gr}{cm^2}$ y lo calentamos a presión constante hasta la temperatura de 100° C, tendremos:

masa de gas:
$$m = 1000 \times 0.001293 = 1.293 g$$

estado inicial:
$$p_1=1033 \, \frac{gr}{cm^2}; V_1=1000 \, cm^3, t_1=0 \, ^{\circ}C$$

estado final: p
$$_2 = 1033 \; \frac{gr}{cm^2}; V_2 = V_1 \; (1 + \alpha \; t) = 1366 \; cm^3; \; t_2 = 100 ^{\circ} C$$

la cantidad de calor que el gas recibe será:

$$Q = m c_p (t_2 - t_1) = 1,293 \times 0,238 \times 100 = 30,77 \text{ cal.}$$

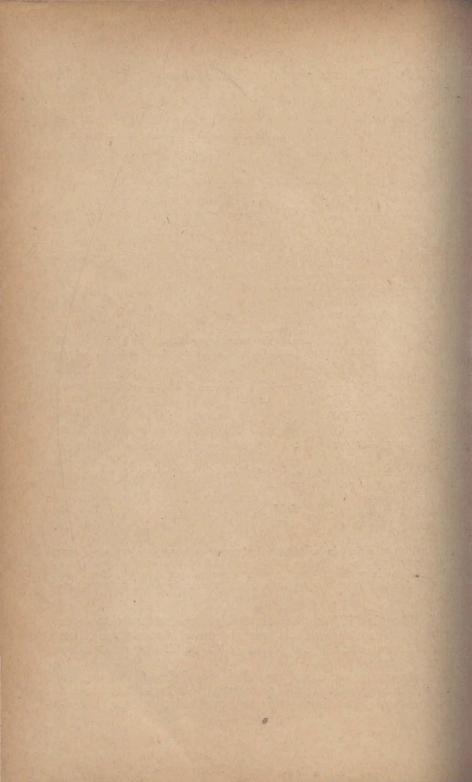
El trabajo de las fuerzas exteriores será negativo, pues el gas se expande, y está medido por el producto de la presión por la variación de volumen:

$$L = -p (V_2 - V_1) = -1033 (1366 - 1000) = -378078 gr cm = -3,78 kgm.$$

aplicando la fórmula [17]:

$$U = J Q + L = 0.427 \frac{\text{kgm}}{\text{cal}}$$
. 30,77 cal $-$ 3,78 kgm $=$ 9,36 kgm

Es decir, la variación de energía interna del gas ha sido de 9,36 kgm; cuyo equivalente en calorías es:


$$U = \frac{9,36}{0,427} = 21,9$$
 cal

Significa esto que, de las 30,77 calorías que se le proporcionaron al gas para calentarlo, el equivalente a 3,78 kgm (8,85 cal.) se emplearon en trabajo de dilatación y las 21,9 restantes han quedado en el gas en forma de energía interna. (En este caso aumentando la energía cinética de las moléculas).

La fórmula [17] expresa el principio de conservación de la energía, pues nos dice que la energía que el sistema recibe en forma de calor o trabajo exterior queda en él aumentando su energía interna.

El de conservación de la energía mecánica (§ 76) es un caso particular de éste, pues se refiere a las transformaciones en que sólo se pone en juego energía mecánica (potencial o ci-

nética).

CAPÍTULO XXII

PROPAGACIÓN DEL CALOR

Conducción, convección y radiación

§ 259.—Propagación.—Sabemos que el calor pasa de los cuerpos más calientes a los más fríos. En algunos casos, directamente a través de materia, en otros sin interposición de materia. En los primeros se producen los fenómenos de conducción o convección, según que la materia interpuesta sea sólida o flúida. Cuando la propagación se produce a través del vacío, se denomina radiación.

§ 260.—Conducción.—La propagación del calor a través de un sólido se llama conducción. Todos los sólidos son más o menos

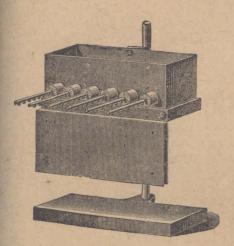


Fig. 476.—La propagación del calor difiere según la sustancia.

conductores del calor. Entre los meteles figuran los mejores conductores.

Una sencilla experiencia permitirá comprobar que no todos los metales conducen igualmente el calor. En la fig. 476 vemos un aparato formado por un recipiente con orificios próximos a la base en los cuales se colocan barras metálicas de igual dimensión y distinto material con pequeñas esferillas de cera adheridas en toda su longitud.

Al colocar agua hirviendo en el recipiente, el calor que se propaga irá desprendiendo las esferas.

Se observa que la distancia hasta la cual se desprenden las esferas es distinta en cada una. La plata y el cobre son los metales más conductores. La teoría de la conducción calorífica fué desarrollada por Fourier y se propone resolver problemas como el siguiente: dada una barra metálica colocada entre dos cuerpos de temperaturas t₁ y t₂, determinar la temperatura en cada punto de la barra y la cantidad de calor que pasa de una fuente a otra en un tiempo dado.

Cuando la cantidad de calor que llega a cada elemento de volumen es igual a la que sale en el mismo intervalo de tiempo, la temperatura es constante en cada punto y el fenómeno se llama estacionario.

En los fenómenos de conducción, el calor pasa a través del sólido, de molécula a molécula, sin que se produzca transporte de materia.

La conductibilidad se caracteriza por un coeficiente λ que se llama coeficiente de conductibilidad y podemos definirlo así: es la cantidad de calor que en la unidad de tiempo atraviesa la unidad de superficie de una placa de ese material, de espesor igual a 1, cuando la diferencia de temperatura entre ambas caras es igual a 1 grado centígrado.

En unidades técnicas será:

$$[\lambda] = \frac{Cal}{m \text{ hora}}$$

En unidades c. g. s.:

$$[\lambda] = \frac{cal}{cm \text{ seg}}$$

Para la plata, el coeficiente λ es igual a 1 en unidades c. g. s. y a 360 en unidades técnicas, o sea: dada una lámina de plata de 1 cm de espesor, si la diferencia de temperatura entre ambas caras es de 1 grado, por cada centímetro cuadrado pasa una caloría por segundo.

La cantidad de calor que pasa, entonces, normalmente a una

superficie s durante el tiempo * es:

$$Q = \lambda s \; \frac{t_2 \, - \, t_1}{e} \; \tau$$

siendo $\frac{\mathbf{t}_2 - \mathbf{t}_1}{\mathbf{e}}$ el cociente de la diferencia de temperatura entre dos puntos próximos situados sobre la perpendicular a la superficie, por la distancia e que los separa. Es la caída de

temperatura por unidad de longitud, llamada gradiente de temperatura en esa dirección.

Ejemplo:

Se tiene una placa extensa de plata de e = 2 cm de espesor y la diferencia de temperatura entre sus caras es de 20°. Calcular la cantidad de calor que pasa por cada dm² en cada unidad de tiempo.

Solución:

$$Q = \lambda \ s \frac{t_2 - t_1}{e}$$

$$Q = 1 \frac{cal}{cm \ seg} \times 100 \ cm^2 \frac{20}{2 \ cm} = 1000 \frac{cal}{seg}$$

Luego: atraviesan la placa mil calorías por segundo.

Para otras sustancias el coeficiente de conductibilidad es muy diferente; así, por ejemplo, en unidades c. g. s. tenemos:

Hierro $\lambda = 0.2$ Plomo $\lambda = 0.08$ Latón $\lambda = 0.3$ Platino $\lambda = 0.2$ Hielo $\lambda = 0.0042$ Corcho $\lambda = 0.0001$

Debemos notar que hemos tomado el ejemplo más sencillo,

de una lámina indefinida, de espesor constante y con sus caras a temperatura también uniforme (problema del muro). Los problemas que se presentan en la práctica son más complejos y casi siempre sólo se los puede resolver en forma aproximada.

§ 261.—Convección.—Se produce en los fenómenos de propagación del calor a través de los flúidos y se caracteriza por la producción de un arrastre de materia.

Cuando calentamos agua en un recipiente, es fácil observar que se produce una circulación del líquido que asciende en la parte que recibe calor y es reemplazado por el líquido frío

Fig. 477.—Convección.

de la parte superior, que desciende (fig. 477). Acercando la ma-

no a la parte superior de una estufa encendida se nota que existe una corriente ascendente de aire. Ese fenómeno recibe el nombre de convección, y es debido a la disminución de densidad del flúido que se calienta. Por esa razón se colocan los caloríferos y radiadores al nivel del piso y los refrigerantes de las cámaras frigoríficas colgados del techo. Invirtiendo la colocación no se favorece el fenómeno de convección y el calor se propaga en el flúido por conducción.

Un ejemplo clásico es el del enfriamiento del agua de un lago por acción del aire frío. Mientras la temperatura es superior a 4°C, el agua que se enfría baja y es reemplazada por agua más caliente (convección). Cuando toda la masa esté a 4°, la que se enfríe en la superficie tendrá menor densidad que el resto y quedará allí; dejará de producirse convección y continuará el enfriamiento por conducción. Por eso la super-

Fig. 478.—El radiador de calefacción se coloca al nivel del suelo y todo el ambiente se caldea por convección.

ficie llega a congelarse y a suficiente profundidad la temperatura sigue siendo de 4° C. El cálculo de la cantidad de calor trasmitido por convección es más complejo que en la conducción, pues intervienen coeficientes que dependen de la forma y manera de estar colocadas las superficies que calientan al flúido.

En general, se admite que la cantidad de calor que recibe el flúido es proporcional a la superficie de caléfacción y a la diferencia entre su temperatura y la del flúido.

§ 262.—Radiación.—La trasmisión por rudiación se produce sin intervención de los medios materiales. Es así que llega el calor del sol a la tierra. Su estudio cuadra más dentro de la óptica, pues se trata de la propagación de radiaciones del mismo tipo que las radiaciones luminosas y que se denominan rayos infrarrojos.

En realidad *irradian calor* todos los cuerpos, pero la energía irradiada depende de la temperatura (es proporcional a la cuarta po-

tencia de la temperatura absoluta).

Cuando estamos frente a una estufa, recibimos calor porque nos lo trasmite el aire, pero gran parte nos llega directamente por radiación. Ocurre, en algunos casos, que el aire de la habitación está frío y, sin embargo, sentimos

exceso de calor en la parte del cuerpo colocada frente a una estufa con fuego muy vivo.

Los que practican deportes en la nieve en días de mucho sol saben que pueden andar sin abrigo, pues aunque el aire está a algunos grados bajo cero, el calor radiante que refleja la nie-

Fig. 479.—Cañerías de calefacción preparadas para quedar embutidas en los muros radiantes.

ve mantiene el cuerpo caliente.

Estos principios son los que en la actualidad se aplican en la realización de instalaciones de calefacción por losas radiantes en las cuales se reemplaza el clásico radiador por el cual circula vapor de agua o agua caliente, y está destinado a entibiar el aire, por cañerías en las paredes y techos que los mantienen a temperaturas relativamente bajas (30 a 40°), de modo que irradian calor suficiente para producir una sensación agrada-

ble aún con aire frío en la habitación (fig. 479 y 480).

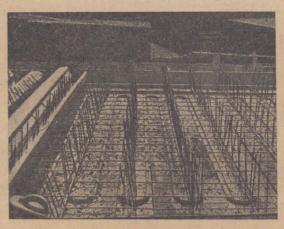
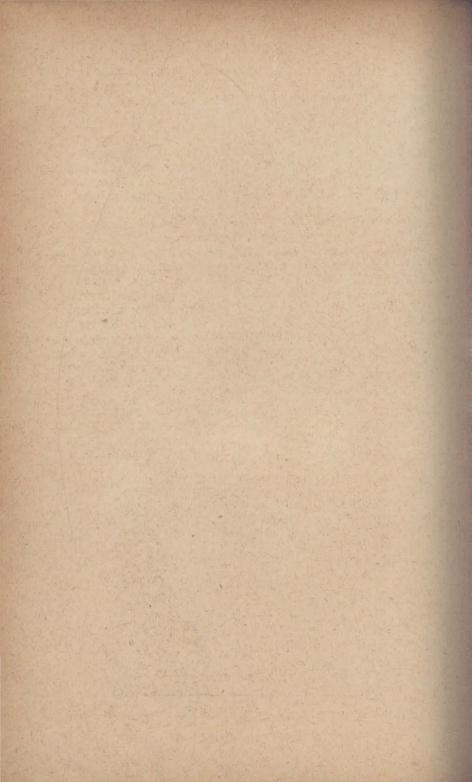



Fig. 480.—Cañerias preparadas para calefacción por losas radiantes.

CAPÍTULO XXIII

CAMBIOS DE ESTADO - FUSIÓN - VAPORIZACIÓN HIGROMETRÍA - VOLATILIZACIÓN

§ 263.—Consideraciones generales.—Los cuerpos se presentan en la naturaleza en diversos estados de agregación. Hemos estudiado la acción del calor sobre ellos, distinguiendo se-

gún se presenten en estado sólido, líquido o gaseoso.

Trataremos ahora de establecer las leyes y condiciones generales en que una sustancia pasa, por acción del calor u otras causas, de un estado a otro, o bien en qué condiciones podemos tener en equilibrio dos o más porciones de una misma sustancia, cada una de ellas en un estado.

Limitaremos nuestro estudio al caso de los cuerpos puros.

§ 264.—Cuerpos puros.—Son cuerpos puros aquellos que tienen propiedades bien definidas, las que no se alteran por los

cambios físicos a que se los somete.

El agua destilada es un cuerpo puro, caracterizado por propiedades físicas y químicas definidas; además, sometiendo una masa de agua a congelaciones, evaporaciones, filtraciones a través de membranas, compresiones, etc., se obtiene al final siempre agua con las mismas características iniciales.

Por el contrario, una solución de agua salada, al congelarse, deposita cristales de sal y cristales de hielo separables

y de distintas propiedades.

El agua salada no es, pues, un cuerpo puro.

Los cuerpos simples, como el oxígeno, el hidrógeno, el mercurio, y los cuerpos de constitución química definida, como el alcohol, la bencina, el cloruro de sodio, etc., etc., son cuerpos puros.

Las soluciones, las mezclas (como el aire) y las aleaciones

no son cuerpos puros.

§ 265.—Concepto de fase. - Equilibrio de fases.—Porciones homogéneas perfectamente delimitadas de un cuerpo puro, constituyen una fase. Así, por ejemplo: trozos de mercurio sólido, o una masa

de mercurio líquido, un volumen de hidrógeno, etc.

Si, en cambio, tenemos, a temperatura adecuada, trozos de mercurio sólido en un recipiente con mercurio líquido, diremos que hay dos fases; una la constituye el líquido y la otra todos los trozos sólidos.

Podríamos tener, también, un recipiente con trozos de hielo, agua y vapor de agua, en cuyo caso coexisten tres fases.

Cuando se trata de una sola fase de un cuerpo, su estado se caracteriza por tres parámetros: presión, volumen y temperatura, fijados los cuales quedan determinadas todas las restantes propiedades físicas. Si sabemos que un recipiente de 1 dm³ contiene oxígeno a presión normal y a temperatura de 0°, quedan determinados su densidad, calor específico, velocidad de propagación del sonido, etc., y si toda la masa es homogénea, estará en equilibrio, es decir, no se operará ningún cambio en ella. Pero si le proporcionamos cierta cantidad de calor, o la comprimimos, o efectuamos cualquier otra variación en los parámetros que caracterizan su estado, pasará a un nuevo estado de equilibrio en que todas las propiedades físicas adquieren nuevos valores, también perfectamente definidos. Y las mismas consideraciones podremos hacer tratándose de un líquido o un sólido.

Pero hay que destacar que, como los tres parámetros que caracterizan cada estado de equilibrio, p, V y T, están vinculados por una ecuación (que en los gases hemos llamado ecuación de estado), no podrán variarse arbitrariamente los tres valores, pues modificados dos cualesquiera de ellos, el tercero podrá calcularse con dicha ecuación. Decimos que el sistema es bivariante.

Así, por ejemplo, si decimos que un kilogramo de agua está sometido a la presión de 100 atmósferas y a temperatura de 80° C, no podremos fijar arbitrariamente su volumen, sino que debemos calcularlo. Para ello calcularíamos el volumen que ocupa a 1 atm y 80° C en base al que ocupa a 0° y presión de 1 atm, conociendo el coeficiente de dilatación y luego calcularíamos el volumen final conociendo el coeficiente de compresibilidad.

Estudiamos entonces distintos estados de equilibrio en una

fase de un cuerpo puro.

Cuando tenemos dos fases de un cuerpo puro, como en el caso de trozos de hielo en agua, o líquido y su vapor, decimos que están en equilibrio cuando no varía la masa de cada una de ellas. Es decir: si en el recipiente en que están colocados los trozos de hielo en contacto con agua observamos que no se funde hielo ni se congela agua, decimos que el sistema está en equilibrio.

Observamos primeramente que el estado de equilibrio no se modifica por la cantidad de sustancias puestas en presencia, o sea que, si a determinada temperatura y presión están en equilibrio 1 kgr de agua con 2 kgr de hielo, también estarán en equilibrio 5 kgr de agua con 5 kgr de hielo a esa misma temperatura y presión.

Pero todo cambio de temperatura o presión modifica el estado de equilibrio. Encontraremos así que a cada temperatura existe una presión de equilibrio perfectamente definida, y, recíprocamente, a cada presión existe una temperatura de equilibrio bien determinada.

Si tenemos agua y su vapor en equilibrio a 100°, sabemos que la presión es de 760 mm, y, recíprocamente, si la presión es de 760 mm, sabemos que estarán en equilibrio a 100° C. En estos sistemas sólo puede fijarse arbitrariamente el valor de un parámetro: se llaman monovariantes.

§ 266.—Cambios de estado.—Si a un sistema de dos fases de un cuerpo puro, en equilibrio, le proporcionamos o quitamos calor, sin modificar la presión exterior, se modifican las masas de ambas fases hasta alcanzar nuevamente el estado de equilibrio. Así, si proporcionamos calor a la mezcla de hielo y agua en equilibrio a cero grado, una parte del hielo pasará a la fase líquida, pero no cambiará la temperatura mientras no se termine el hielo; y si al sistema formado por agua y su vapor le quitamos calor haciendo de modo que no se modifique la presión, una parte del vapor pasará a la fase líquida.

Entonces se producen los cambios de estado, que estudia-

remos teniendo en cuenta las siguientes leyes:

- 1º) A cada presión existe una temperatura que llamaremos punto de transformación.
- 2°) A cada temperatura existe una presión de cambio de estado que llamaremos presión de transformación.
- 3º) A cada presión y temperatura existe una cierta cantidad de calor necesario para producir el cambio de estado, que se llama calor de transformación.

Así, por ejemplo, el hielo se transforma en agua (fusión) a cero grado y presión de una atmósfera, absorbiendo 80,025 calorías por gramo. Por lo tanto, es: punto de fusión a 1 atm = cero grado; presión de fusión a cero grado = 1 atm; calor de fusión a cero grado = 80,025 calorías/gramo.

Estudiaremos los siguientes cambios de estado:

- 1º) Paso de fase sólida a líquida: fusión, y recíprocamente: solidificación.
- 2º) Paso de fase líquida a gaseosa: vaporización, y viceversa: condensación.
- 3º) Paso de fase sólida a gaseosa: volatilización, y viceversa: sublimación.
- 4º Paso de una fase sólida a otra: transformaciones polimorfas y alotrópicas.
- § 267.—Fusión. Leyes para p = constante.—Cuando un cuerpo puro en estado sólido es calentado a presión constante, se verifica que al llegar a una determinada temperatura pasa del estado sólido al líquido; este fenómeno es la fusión.

Puede verificarse el cumplimiento de las siguientes leyes:

1º) A una presión dada, cada cuerpo puro funde a una determinada temperatura, que se llama su punto

de fusión.

2º) Mientras dura la fu-sión, la temperatura permanece constante.

Fig. 481.—Durante la fusión se mantiene constante latemperatura.

Se comprueban colocando un cuerpo en un recipiente adecuado y calentándolo; el termómetro t (fig. 481) indicará el valor de la temperatura de fusión. Mientras quedan porciones sólidas la temperatura no cambia.

§ 268.—Solidificación. -Leyes para p = constante.—El paso del estado líquido al sólido se llama solidificación.

Si la solidificación se produce a una presión invariable, valen para ella dos leyes análogas a las del parágrafo anterior:

19) Cada cuerpo puro solidifica a una determinada temperatura, que es igual a su temperatura de fusión.

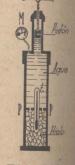


Fig. 482 .-La temperatura de una mezcla de hielo y agua disminuye at aumentar la presión.

2º) Durante la solidificación la temperatura permanece constante.

TABLA XXI

TEMPERATURAS Y CALORES DE FUSIÓN

(p = 760 mm Hg)

		f cal		įŧ	f cal
Aluminio	657°,3	94	Fósforo blan-		A STATE OF THE PARTY OF THE PAR
Bismuto	269°,2	12,8	co	44°	5
Cromo	1505°,0	32	CO ²	—57°	192
Cobre	1082°,6	41	Agua	0°	80
Mercurio	—39°	2,8	Sulfuro de		17.12
Hierro	1505°	49	carbono	—112°,8	100
Níquel	1452°	65	Cloruro de		STATE OF
Plata	960°	26	sodio	780°	124
Plomo	327°,4	5,5	Alcohol etí-		
Oro	1066°	15,9	lico	—130°	-
Platino	1755°	27	Glicerina	20°	42
Azufre (róm-	A THE	THE SALE	Eter sulfú-		
bico)	113°	9	rico	—117°,6	27,4
Azufre (mo-	17		Estearina	68°	48
noclínico)	119°,5	10	Benzol	5°,5	30,4
Iodo	114°	-	Acido ben-		
			zoico	121°	-

§ 269.—Calor de fusión.—Se comprueba que para producir la fusión es necesario proporcionar al sólido, que se encuentra a la temperatura de fusión, cierta cantidad de calor.

Llamamos calor de fusión (f) a la cantidad de calor necesario para fundir la unidad de masa del sólido a la temperatura de fusión.

En la tabla XXI figuran los calores de fusión de algunas sustancias en cal/g. El calor de fusión es

igual al de solidificación.

Este calor se puede medir con un calorímetro de mezclas; supongamos que se tiene un calorímetro cuya masa total de agua, incluído el equivalente en agua del recipiente, es M y la temperatura inicial es t_i . Si la temperatura de fusión es inferior a la temperatura inicial del calorímetro, se echa en él una masa m de sólido a la temperatura de fusión T (caso del hielo). Si la temperatura de fusión es mayor que la del calorímetro, se vierte en él una masa m de líquido a la temperatura de fu-

sión (caso de los metales). En el primer caso el calorímetro pierde calor y en el segundo gana calor. La cantidad de calor recibido será en ambos:

$$Q = M (t_f - t_i)$$

Este calor proviene: del calor de transformación (m.f) que ha perdido o ganado la sustancia al cambiar de estado (fundirse o solidificarse) y el calor que ha cedido al pasar una vez transformada, de la temperatura de fusión T hasta la temperatura final del conjunto: mc $(T-t_i)$, siendo c el calor específico de la sustancia en el estado final.

Como la cantidad de calor recibida por el calorímetro debe

ser igual a la que ha cedido la sustancia, podemos escribir:

$$M(t_f - t_i) = mf + mc(T - t_f)$$

fórmula que nos da directamente f con signo positivo o negativo según se haya producido solidificación o fusión.

Ejemplo:

1) En un calorímetro cuyo equivalente total en agua es M=500~g se colocan 20 g de hielo bien seco a 0°. Calcular el calor de fusión del hielo sabiendo que las temperaturas inicial y final del calorímetro son: $t_i=18^\circ,\,20;\,t_f=14^\circ,\,43.$ Además es c=1

$$f = rac{M}{m} rac{(t_r - t_i)}{m} - c \ (T - t_r) =$$

$$= rac{500 \ (14,43 - 18,20)}{20} - 1 \ (0 - 14,43) = - rac{500 \times 3,77}{20} + 14,43$$

$$f = - 79,8 rac{cal}{a} (fusión)$$

2) En el mismo calorímetro a igual temperatura inicial se vierten 50 g de plomo fundido siendo $T=327^{\circ},4$ y alcanza una temperatura final $t_{\rm f}=19,70^{\circ}{\rm C}$, sabiendo que el calor específico del plomo sólido es c=0,031 cal/g. Calcular el calor de solidificación.

$$f = \frac{500 (19,70 - 18,20)}{50} - 0,031 (327,4 - 19,70) = 5,5 cal/g.$$

§ 270.—Fusión pastosa y fusión franca.—En lo que antecede nos hemos referido a cuerpos que, llegados a la temperatura de fusión, pasan netamente al estado líquido. Este tipo de fusión se llama fusión franca; la presentan el azufre, la estearina, el hielo y la mayoría de los cuerpos puros.

Otros cuerpos, como el vidrio, la cera, etc., por acción del

calor se ablandan, tomando consistencia pastosa, y pasan por una serie de estados intermedios antes de fundir.

En esto consiste la fusión pastosa, la que origina un aná-

logo tipo de solidificación.

Se explica este fenómeno para el vidrio, admitiendo que, en realidad, en vez de un sólido, es un líquido que a la temperatura ordinaria tiene un coeficiente de viscosidad tan grande que parece un sólido. Al calentárselo no funde, sino que disminuye su viscosidad gradualmente hasta tomar la apariencia de los demás líquidos. Un hilo de vidrio sometido por un tiempo a una torsión, queda deformado. Este hecho se explica si se admite que el vidrio es un líquido, pues éstos no presentan reacciones elásticas de torsión.

§ 271.—Influencia de la presión.—Para comprobar la influencia de la presión en la temperatura de fusión, Lord Kelvin

empleó el dispositivo indicado en la fig. 482.

Una mezcla de hielo y agua a 0° se coloca en la parte inferior de un recipiente de paredes de vidrio muy resistentes. Una placa PP de plomo impide que el hielo ascienda en la masa de agua. En las condiciones iniciales el termómetro t marca 0°.

Introduciendo el pistón a tornillo de la parte superior, la

presión aumenta, siendo medida por el manómetro M.

Se observa que la temperatura de la mezcla hielo-agua dis-

minuye a medida que aumenta la presión.

Amagat estudió el equilibrio de las fases sólido-líquido, a presiones elevadas. Colocó líquidos en un tubo que mantenía a una temperatura constante t por una circulación de agua y los sometió a presiones crecientes producidas inyectando mercurio con una bomba.

Al llegar a una presión p, el líquido se solidifica, siendo t

su temperatura de fusión a esa presión.

Posteriormente Tammann y Hulett han realizado numerosas determinaciones.

De acuerdo a todas esas experiencias, puede decirse que los cuerpos puros aumentan su temperatura de fusión al aumentar la presión exterior, en casi todos los casos.

El agua es una excepción, pues su punto de fusión dismi-

nuye con el aumento de presión.

Representando en un sistema de ejes cartesianos los puntos cuyas abscisas y ordenadas son, respectivamente, las temperaturas y presiones de equilibrio de las fases sólidas y líquidas, se tiene la curva de fusión de la sustancia estudiada.

Los cuadros que siguen dan algunos resultados de las expe-

riencias de Tammann:

TABLA XXII

PRESIONES Y PUNTOS DE FUSIÓN

	Benceno		Bismuto		Agua	
	p Kgr cm ²	t	p Kgr cm²	t	p Kgr cm²	t
	1	5°,43	1	269°,2	1	0°
	161	10°,12	970	273°	13	— 0°,10
13	533	20°,13	1990	276°,8	336	- 2°,5
	948	30°,05	2420	278°,8	890	— 7°,5
17	1371	40°,03	2860	279°,8	1155	—10°
1	1805	50°,03			1625	—15°
F	2306	60°,00			2042	—20°
133	2846	69°,99			2200	—22°

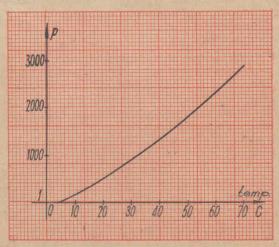


Fig. 483 a.—Curva de fusión del benceno.

Las figuras 483 muestran las curvas de fusión correspondientes al benceno y al agua. Las ordenadas son las presiones y las abscisas las temperaturas de fusión correspondientes.

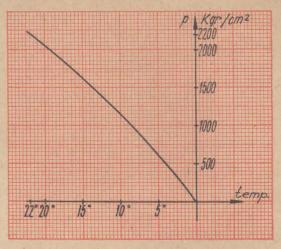


Fig. 483 b.—Curva de fusión del agua.

§ 272.—Rehielo.—Dos trozos de hielo, comprimidos uno contra el otro, se unen formando un solo bloque.

El hecho se explica por efecto del descenso del punto de

Fig. 484.—Rehielo.

fusión al aumentar la presión. Al oprimir los trozos de hielo disminuye el punto de fusión en las partes en contacto; como consecuencia de ello, se produce una fusión parcial acompañada de disminución de la temperatura hasta el valor de equilibrio.

Suprimiendo la presión, el agua de fusión se solidifica por estar a menos de 0°, uniendo las partes.

La figura 484 muestra una curiosa experiencia sobre rehielo. El alambre que sostiene la pesa P, pre-

siona sobre el hielo; después de un tiempo atraviesa el bloque de hielo, que queda unido por efecto del rehielo.

§ 273.—Cambio de volumen en la fusión.—La fusión produce en los cuerpos un cambio de densidad; por lo general, la fase líquida es menos densa que la sólida en las sustancias puras.

Hay, sin embargo, excepciones: el hielo tiene menos densidad que el agua de fusión, otro tanto pasa con el bismuto y el hierro. Los valores que a continuación se indican dan las diferencias entre los volúmenes específicos de la fase líquida

y la sólida de cada cuerpo. Para el agua, el bismuto y el hierro esa diferencia es negativa.

TABLA XXIII

Fusión - Variación del volumen específico en

em3

	the Real Property lies, the Parket Name of Street, or other Designation of the Parket Name of Street, or other Designation of the Parket Name of Street, or other Designation of the Parket Name of Street, or other Designation of the Parket Name of Street, or other Designation of the Parket Name of Street, or other Designation of the Parket Name of Street, or other Designation of the Parket Name of Street, or other Designation of the Parket Name of Street, or other Designation of the Parket Name of Street, or other Designation of Street,
Aluminio	+ 0.0190
Bismuto	- 0,0034
Estaño	+ 0,0039
Hierro	- 0,0085
Plomo Fósforo blanco	+ 0.0034
Azufre	$+0,0191 \\ +0,0287$
Zinc	+ 0,0105
Agua	- 0,0830

§ 274.—Sobrefusión.—En ciertas condiciones, es posible mantener una sustancia pura, en su fase líquida, por debajo de

la temperatura de fusión correspondiente a la

presión que soporta.

Se la mantiene así en un estado inestable de equilibrio de fases. La agitación del recipiente o el agregado de una partícula sólida provocan bruscamente la solidificación.

La figura 485 muestra un dispositivo para observar la sobrefusión del agua. Un tubo de vidrio cerrado lleva en su interior un termómetro y una masa de agua pura, hervida y a la presión normal. Enfriándola lentamente y sin mover el aparato, con una mezcla de hielo y sal, se puede llegar a — 10° sin que se solidifique. Agitando el frasco se forma hielo de inmediato y el termómetro sube a 0°.

El fósforo blanco fundido bajo agua presenta sobrefusión, quedando líquido a menos de 44°. Agregando un trozo de fósforo sólido termina ese equilibrio inestable.

Un caso interesante es el siguiente:

El silicato de calcio cristalizado tiene un punto de fusión bien definido: si se enfría lentamente el líquido hasta la temperatura ordinaria su

viscosidad aumenta hasta convertirse en un vidrio trasparente e isótropo como un líquido, pero tan duro que raya el hierro.

Fig. 485. — Aparato para sobrefusión.

Calentado, presenta el aspecto de la fusión pastosa, y dejado un tiempo en la llama, cristaliza, desvitrificándose. Los cristales blancos formados tienen fusión franca. Los vidrios parecen ser líquidos en estado de sobrefusión.

§ 275.—Vaporización - Vapor saturado - Tensión de vapor. -Vamos a estudiar, ante todo, la vaporización de un líquido en el vacío, disponiendo para ello de dos tubos de Torricelli (§ 140) en la forma que indica la figura 486. El desnivel de mercurio será de 76 cm, valor equivalente a la presión atmosférica.

Introduciendo una pequeña masa de líquido en el tubo B con ayuda de una pipeta de extremo curvado, se observa que el líquido se vaporiza de inmediato cuando llega a la cámara barométrica. Al mismo tiempo el nivel del mercurio desciende en el tubo B hasta la altura h. Este hecho acusa la existencia de una presión ejercida por el vapor del líquido sobre el mer-

curio del tubo B, presión que constituye la ten-

sión de vapor del líquido.

Su valor es igual al desnivel: p = 76 — h (cm Hg). Agregando nuevas porciones de líquido, el valor de la tensión p aumenta, mientras el líquido se vaporiza totalmente. Pero, llega un

momento en que una pequeña cantidad de líquido queda sobre el mercurio en el tubo B (fig. 487). Se dice entonces que el vapor está saturado.

Fig. 486 .-

Tensión de va-

Agregando más líquido, éste no se vaporiza, sino que va llenando la cámara del tubo B; entretanto, el desnivel h' permanece constante.

La tensión del vapor p ha alcanzado su valor máximo desde el momento de la saturación:

$$p_s = 76 - h'$$

Esta tensión máxima es, como se ve, independiente del espacio ocupado por el vapor.

Esto puede comprobarse mejor con el aparato llamado barómetro a cubeta profunda (fig. 488a). Introduciendo el tubo, aumenta la cantidad de líquido, disminuyendo el espacio ocupado por el vapor, pero el desnivel que marca la tensión máxima no varía.

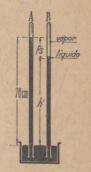


Fig. 487.—En el tubo B, el vapor está saturado. Su tensión ha alcanzado el valor máximo a esa temperatura.

Levantando el tubo, puede volverse a vaporizar todo el

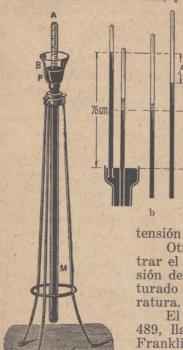


Fig. 488.—Cubeta profunda para estudiar la tensión de los vapores.

líquido: entonces la tensión del vapor se hace menor que la máxima (fig. 488 b).

Empleando diversos líquidos, a igualdad de temperatura cada uno tiene una tensión de vapor saturado que lo caracteriza.

§ 276.—Tensión de vapor y temperatura.—Si en el tubo B, de la figura 487, se vierte un poco de éter exteriormente, sube el mercurio indicando que al enfriarse el vapor, disminuye su

tensión de saturación.

Otra experiencia sencilla puede mos-

trar el aumento de la tensión del vapor de éter saturado al elevar su tempe-

El aparato de la fig. 489, llamado hervidor de Franklin; tiene éter coloreado en el tubo y vapor de éter saturado en ambas ampollas. Aplicando la mano en una de ellas, aumenta la tensión del vapor por el calor cedido. El deseguilibrio de tensiones

empuja el líquido y pasa a la otra ampolla pa-Fig. 490. - Me-

dida de la tensión de vapor saturado a determinada temperatura.

76 cm

reciendo que hierve. Para determinaciones cuantitativas se emplea el dispositivo de la fig. 490. El baño a temperatura t leída en el termómetro, calienta el vapor saturado del tubo B aumentando su presión que se mide por el desnivel p_s .

Fig. 489.—Hervidor de Franklin.

Haciendo una serie de medidas se puede trazar la curva de vaporización tomando como abscisas las temperaturas y como ordenadas las tensiones de vapor.

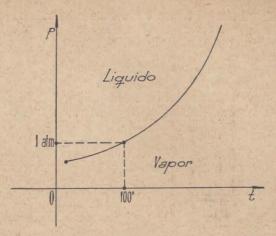


Fig. 491.—Tensión del vapor de agua saturado en función de la temperatura.

TABLA XXIV

TENSIÓN DE VAPOR DE AGUA SATURADO

	p_s			p_s	
	mm Hg	gr cm ²	t	mm Hg	Kgr cm ²
0°	4,6	6,5	160°	1,65	6,32
20°	17,4	23,7	180°	7,59	10,3
60°	148,9	203	200°	17,69	15,9
80°	354,9	485	250°	39,78	40,5
100°	760	1033	300°	65,44	89,0
120°	1491	2028	350°	127,20	175,
140°	2718	3095	360°	152,20	207,1

La figura 491 representa esta curva para el vapor de agua, cuyas tensiones de vapor saturado a diversas temperaturas están consignadas en el cuadro adjunto. Para 0° esta tensión es de 4,6 mm de Hg y para 100° es de 760 mm (1 atmósfera).

- § 277.—Leyes de vaporización en el vacío.—De acuerdo a los hechos consignados, podemos establecer las tres leyes siguientes:
- 1º) Los líquidos se vaporizan en el vacío, adquiriendo tensiones crecientes hasta que el ambiente está saturado.

2º) A una temperatura dada, la tensión del vapor saturado (tensión máxima) es independiente del volumen que ocupa.

3º) La tensión del vapor saturado

crece con la temperatura.

El caso estudiado corresponde al equilibrio de las fases líquida y gaseosa del agua; la curva de vaporización, es la curva de equilibrio.

§ 278.—Principio de Watt o de la pared fría.—Dos cámaras A y B comunicadas por su parte superior contienen un

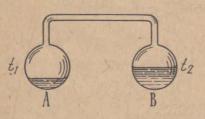


Fig. 492.—Principio de Watt o de la pared fría.

líquido acompañado de su vapor (fig. 492) a diferentes temperaturas. Si $t_1 > t_2$, la tensión p_1 será mayor que la p_2 . Esta diferencia de tensiones hará pasar el líquido de A hacia B, produciéndose la destilación hasta que len A sólo hay vapor.

En el estado de equilibrio final la tensión del vapor

en el recipiente será la que correspon-

de a la temperatura más baja.

La tensión de equilibrio será, pues, p₂, aunque A continúe a la temperatura t₁. Esta propiedad se llama principio de Watto de la pared fría.

Fig. 493.—Liquido en ebullición.

§ 279.—Ebullición.—Cuando se calienta un líquido en el aire, su tensión de vapor saturado aumenta.

En el instante en que dicha tensión se hace igual a la presión que soporta el líqui-

do, entra en ebulición.

El fenómeno consiste en una evaporación efectuada simultáneamente en la superficie libre y en el seno del líquido donde se forman burbujas que ascienden agitando la masa.

El líquido entra así en un estado particular de agitación desprendiendo vapores en forma visible y así sigue hasta que

se vaporiza totalmente.

El agua *hierve* bajo la presión atmosférica a 100°. A esa temperatura su tensión de vapor saturado es igual a la presión exterior.

TABLA XXV

TEMPERATURAS DE EBULLICIÓN (a la presión de 760 mm de Hg)

(to let problem and) or mini	00 22	01
Azufre	+	444°,5
Aluminio	+	1800°
Bismuto	+	1440°
Cobre	+	2300°
Cloro	-	37°,6
Fósforo	+	287°
Estaño	+	2220°
Hierro	+	2450°
Hidrógeno	_	252°,8
Helio	_	269°
Iodo	+	184°,3
Mercurio	+	357°
Oxígeno	7	183°
Plata	+	1955°
Benceno	+	80°
Tolueno	+	109°,2
Sulfuro de Carbono	+	46°,3
Alcohol etílico	+	78°,3
Eter sulfúrico	+	34°,6

En rigor, la ebullición franca se produce cuando la tensión del vapor saturado supera en un pequeño valor a la presión exterior, pero el valor límite es el de p. = H.

La existencia de aire u otro gas disuelto en el líquido y que pueda formar burbujas en su seno facilita la producción

del fenómeno.

La falta de gases en la masa del líquido retarda la ebullición y hace irregular la formación de burbujas de vapor en el interior. Basta colocar con un tubito unas burbujas de aire en el seno del líquido sobrecalentado para provocar la ebullición franca.

§ 280.—Leyes de la ebullición.—Pueden verificarse las si-

guientes leyes experimentales:

- 1º) A una presión constante dada, cada líquido hierve a una temperatura determinada que se llama su punto de ebullición.
- 2º) La temperatura del vapor desprendido permanece constante durante la ebullición.
 - 3º) La ebullición se inicia cuando

la tensión de saturación del vapor del líquido es igual a la presión que soporta.

§ 281.—Calor de vaporización.—La cantidad de calor λ que hay que entregar a 1 gramo de líquido a t° para hacerlo pasar a l estado de vapor saturado a la misma temperatura se llama calor de vaporización a la temperatura t.

Como el volumen específico del vapor saturado es mayor que el del líquido, una parte de ese calor se emplea en realizar trabajo exterior (λ_e) y la restante queda en el vapor en forma de energía molecular (λ_i).

Podremos separar, por tanto, el valor λ en otros dos:

$$\lambda = \lambda_i + \lambda_e$$

siendo λ_1 el calor interno del vapor y λ_e el equivalente al trabajo exterior. Este valor es fácil de calcular; si es V el volumen específico del vapor y σ el del líquido, la variación de volumen es V — σ , y siendo la presión exterior igual a la tensión del vapor saturado, el trabajo, igual al producto de la presión por la variación de volumen será:

$$L = p_s (V - \sigma)$$

que equivale a la cantidad de calor:

$$\lambda_{\rm e} = \frac{1}{J} p_{\rm s} (V - \sigma)$$

en que J es el equivalente mecánico del calor.

Se llama calor total de vaporización a la temperatura t, a la cantidad de calor necesaria para transformar un gramo de líquido a cero grado en vapor saturado a la temperatura t.

Está formado por la suma del calor de vaporización λ más el calor del líquido: q=ct (pues m=l) luego el calor total r es:

$$r = q + \lambda$$

Resumiendo

$$r = q + \lambda = q + \lambda_i + \lambda_e$$

de donde

$$r=ct+\lambda_i+rac{1}{J}p_s \ (V-\sigma)$$

Ejemplo:

Para el agua a 100° se determina $\lambda = 539,1 \frac{\text{cal}}{\text{g}}$.

Como V = 1670,2
$$\frac{cm^3}{g}$$
; σ = 1 $\frac{cm^3}{g}$; p_s = 1,033 $\frac{kgr}{cm^2}$ y J = 42,7 $\frac{kgr}{cal}$

resulta:

$$\lambda_{e} = \frac{1}{42,7} 1,033 \times 1669,2 = 40,4$$

El calor interno será:

$$\lambda_1 = \lambda - \lambda_e = 498.7 \; \frac{\mathrm{cal}}{\mathrm{g}}$$

y el calor total

$$r = \lambda + c \cdot t = 539,1 + 1 \times 100$$

 $r = 639,1 \frac{cal}{\sigma}$

§ 282.—Determinación del calor de vaporización.—El calor de vaporización se mide con un calorímetro de mezclas en el cual se coloca un serpentín al que se hace llegar una corriente de vapor.

Un tipo corriente es el de Berthelot (fig. 494). El recipiente D en la parte superior lleva el líquido a evaporar, que se calienta directamente con el mechero B interponiendo la malla metálica MM. El vapor pasa al ser-

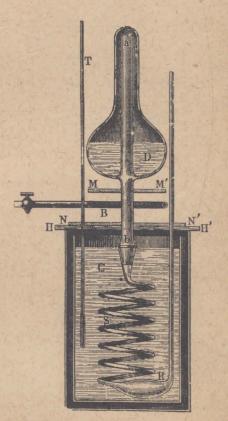


Fig. 494.—Calorimetro de Berthelot para calor de vaporización.

pentín por el tubo ab y se condensa en él cediendo calor al calorímetro. La cantidad total m del vapor condensado se determina por la diferencia de pesadas del serpentín antes y después de la experiencia.

Si es M la masa del agua del calorímetro (incluído el equivalente en agua del serpentín y el vaso) y t_i , t_f las temperaturas inicial y final, el calor recibido por el calorímetro será:

$$Q = M (t_t - t_i)$$

Este calor ha sido entregado por el vapor en un doble proceso: primero al transformarse en líquido a la temperatura T de ebullición, y luego, al enfriarse ese líquido desde la temperatura T hasta la temperatura final $t_{\rm f}$. Si es c el calor específico del líquido y m la masa de vapor condensado, será:

$$Q = m\lambda + mc (T - t_r)$$

Igualando este calor con el que recibió el calorímetro

$$M (t_r - t_i) = m\lambda + mc (T - t_t)$$

de donde resulta:

$$\lambda = \frac{M (t_r - t_i)}{m} + c (T - t_i)$$

Fig. 495.—El agua hierve a diversas temperaturas bajo la campana de la máquina neumática.

Fig. 496.—Ebullición provocada por disminución de la presión.

así se obtiene el calor de vaporización.

§ 283.—Ebullición del agua a temperaturas distintas de

100°.—La curva de vaporización (§ 276) permite determinar la temperatura de ebullición del líquido para una presión dada,

y, también, hallar la presión a que puede hacerse hervir un líquido que está a deter-

minada temperatura.

El agua a 20° de temperatura (fig. 495) hierve bajo la campana de la máquina neumática cuando la presión interna es de 17,4 mm de mercurio, pues ésta es la tensión del vapor de agua saturado a 20° centigrados (ver tabla XXIV).

Una experiencia clásica para provocar la ebulición del agua a baja temperatu-

ra es la de Franklin.

En un balón se hace hervir agua y en un momento dado se lo tapa e invierte colocándolo en un soporte, como indica la fig. 496. Mojando con agua fría la parte superior del balón, el vapor se condensa disminuyendo la pre-

sión.

Llega un momento en que el líquido hierve, renovándose la agitación cada vez que se vierte agua fría sobre el balón.

El hipsómetro de Regnault (fig. 497) permite medir las temperaturas de ebullición a diversas alturas, comprobándose que cuando decrece la presión atmosférica, disminuye dicha temperatura. Los habitantes de lugares

tro. cha temperatura. Los habitantes de lugares muy altos deben cocinar sus verduras en autoclaves o pequeñas marmitas.

Fig. 497.—Hipsome-

§ 284.— Marmita de Papin.—Colocando agua en un recipiente cerrado se la pueda tener sin hervir a temperaturas superiores a 100°.

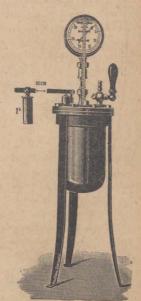


Fig. 498.—Marmita de Papin.

La marmita de Papin (fig. 498) es un recipiente de paredes resistentes con una tapa superior asegurada por un fuerte dispositivo a tornillo, en cuyo interior se coloca agua.

Una válvula de seguridad, formada por una pequeña tapa oprimida por una palanca sobre la que corre la pesa P, permite graduar la presión máxima.

Siendo s la sección y p la presión del vapor, el momento de la fuerza p.s debe equilibrar al momento de P. Corriendo esta pesa se gradúa el valor de la presión p que abre la válvula.

Además, hay un manómetro metálico y un tubo para colocar el termómetro.

Calentando el agua aumentan los valores indicados per el manómetro y el termómetro correspondiendo a los valores de equilibrio de la curva de vaporización C.

Una aplicación de la marmita es la autoclave empleada

para esterilizar objetos al vapor.

§ 285.—Vaporización en el aire (evaporación).—La vaporización en el aire, lo mismo que en otros gases, constituye una difusión de las moléculas del líquido en el gas.

Se produce lentamente; tanto más cuanto mayor es la pre-

sión que soporta el líquido.

La tensión de saturación del vapor es la misma, tanto que se vaporice en un gas como en el vacío, cosa que puede probarse con un tubo de Torricelli en el que se deja un poco de gas. Dentro del tubo, la presión total es igual a la suma de presión del gas más la tensión del vapor.

La velocidad de evaporación en la atmósfera puede expre-

sarse por la fórmula:

$$m = KS \frac{p_s - p}{H}$$

donde m es la masa evaporada por unidad de tiempo, S la superficie del líquido, H la presión barométrica, p_s la tensión de saturación del líquido a la temperatura a que se encuentra, p la tensión del vapor del líquido en el aire, y K un coeficiente que depende de las unidades empleadas y del estado de agitación de la atmósfera.

Cuando p = ps, el ambiente está saturado y cesa la eva-

poración.

§ 286.—Estado higrométrico.—En el aire existe vapor de agua en cantidad variable, según los instantes. Una superficie enfriada se empaña y hasta se recubre de una capa de rocío.

Hay días en que este rocío aparece en los muros, vidrios y diversos objetos; entonces la atmósfera está saturada de vapor de agua.

El estado higrométrico es la relación entre la masa de vapor m que hay en un metro cúbico de atmósfera y la masa m_s que habría si estuviera saturado a la misma temperatura. Se lo llama también humedad relativa.

$$E = \frac{m}{m_{\rm s}}$$

Puede demostrarse que esta relación es igual a la que existe entre la tensión p del vapor de agua en el aire y la tensión máxima p_s que tendría si estuviese saturado a la temperatura del ambiente.

$$E = \frac{p}{p_s}$$

Prueba.-Aplicamos al vapor de agua la ecuación de estado

y siendo V = 1 m3

Para el estado de saturación a igual temperatura

$$p_s = m_s C T$$

y dividiendo ordenadamente:

$$\frac{p}{p_s} = \frac{m}{m_s} = E$$

El estado higrométrico es menor que 1, salvo el caso de saturación en que $p=p_s$, apareciendo el rocío,

§ 287.—Higrómetros de condensación.—Se fundan en el

siguiente principio: enfriando suficientemente una placa metálica o de vidrio, llega un momento en que la tensión p existente en el aire es igual a la de saturación a la temperatura de la placa.

Cuando eso sucede la placa se empaña por condensación del vapor, que a su temperatura está saturado.

Tomando la temperatura t, a que

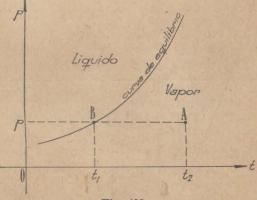


Fig. 499.-

aparece el rocío, y la del ambiente t1, se buscan en las tablas

las tensiones de vapor de agua saturado que les corresponden. En el gráfico de vaporización la evolución hecha (enfriamiento a presión constante p) equivale a hacer recorrer al estado del vapor la recta AB hasta llegar al punto B. Entonces está saturado y tiene temperatura to (fig. 499).

§ 288.—Higrómetro de Daniell.—Consta de un tubo de

Fig. 500.—Higrómetro de Daniell.

vidrio doblado en U con dos ampollas en las ramas verticales y con éter sulfúrico en su interior (fig. 500).

La rama vertical más larga tiene un termómetro que da la temperatura del éter líquido y de la pared de la ampolla A, que lleva un anillo de espejo metálico para observar el empañamiento.

Para enfriar esta ampolla y provocar el empañamiento cuando alcance la temperatura t₁, se vierte éter en la ampolla B. Activiormente

Al evaporarse el éter la temperatura de B baja, produciéndose una condensación en su interior.

Como consecuencia de esto, el éter de A destila hacia B.

La temperatura en A baja, sien-

do indicada por el termómetro respectivo; observando cuando se empaña el espejo metálico se tiene t₁. La temperatura del ambiente t₂ se lee en el termómetro del soporte del aparato.

De una tabla se sacan p y p_s calculándose E.

TABLA XXVI

TENSIONES DE VAPOR DE AGUA SATURADO EN MM DE MERCURIO

		A CONTRACTOR OF THE PARTY OF TH					1.1
t	p_s	t	$ p_s $	t	p_s	t	p_s
_5°	3,11	60	7,00	17°	14,42	28°	28,10
-4°	3,37	7°	7,49	18°	15,36	29°	29,78
-3° -2°	3,64	80	8,02	19°	16,35	30°	31,55
	3,94	90	8,57	20°	17,40	31°	33,41
-1°	4,26	100	9,17	21°	18,49	32°	35,36
0°	4,60	110	9,79	22°	19,66	33°	37,41
1°	4,94	120	10,46	23°	20,89	34°	39,57
2°	5,30	13°	11,16	24°	22,18	35°	41,83
3°	5,69	14°	11,91	25°	23,55	36°	44,40
4°	6,10	15°	12,70	26°	24,99	37°	46,90
5°	6,53	16°	13,51	27°	26,51	38°	49,50

§ 289. Higrómetro de Alluard.—Este aparato (fig. 501) tiene una placa plateada o dorada A, que forma parte de un

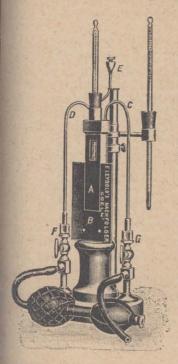


Fig. 501.—Higrómetro de Alluard.

Resulta:

$$E = \frac{15,36}{19,66} = 0.78 = .78 \%$$

§ 290.—Higrómetro de cabello.—Para observaciones aproximadas se utiliza el higrómetro de cabello, que se basa en las variaciones de longitud que experimenta un cabello bien desengrasado, con las variaciones de humedad. Se construye su escala por comparación con los anteriores.

recipiente en el que se ha colocado éter. El éter es evaporado con ayuda de una corriente de aire producida con una pera de goma de pulverizador. El punto de rocío se determina por comparación con una placa igual, B, que la rodea.

Es más cómodo y más preciso

que el anterior.

Ejemplo.—Se ha determinado:

Temperatura ambiente t = 22°

Punto de rocío t₁ = 18°

De las tablas: $p_s = 19,66 \text{ mm}$

p = 15,36 mm

Fig. 502.—Higrómetro de cabello.

Fig. 503.—Psicrómetro.

§ 291.—Psicrómetro.—Un método muy utilizado para determinar estados higrométricos es el del psicrómetro que consta de dos termómetros. Uno de ellos da directamente la temperatura ambiente. El otro lleva el bulbo envuelto en un paño humedecido.

El agua del paño se evapora con mayor o menor velocidad,

según la humedad del ambiente (§ 285).

Si el ambiente está saturado, no hay evaporación y ambos termómetros indican igual temperatura. A medida que disminuye la humedad del ambiente, aumenta la velocidad de evaporación, y, por lo tanto, disminuye la temperatura indicada por el termómetro húmedo. En tablas especiales se determina el estado higrométrico, en base a la temperatura ambiente t y a la diferencia de temperatura en ambos termómetros $(t-t_1)$.

TABLA XXVII

DETERMINACIONES DE E CON EL PSICRÓMETRO

Valores de la humedad relativa para la presión de 760 mm de mercurio (1).

Tin.	Diferencias to-to																
t°	0°,5	1°	1°,5	2°	2°,5	3°	3°,5	40	40,5	5°	6°	7°	80	90	10°	11º	12
30	92	84	76	69	62	54	45	40	32	25	12	-	-	-	_	-	1
60	94	87	80	73	66	60	54	47	41	35	23	11	-	-	-	-	1
90	94	88	82	76	70	65	59	53	48	42	32	22	12	3	-	-	-
1.2°	94	89	84	78	73	68	63	58	53	48	38	30	21	12	4	-	-
15°	95	90	85	80	76	71	66	62	58	53	44	36	28	20	13	4	-
18°	95	90	86	82	78	73	69	65	61	57	49	42	35	27	20	13	6
21°	96	91	87	83	79	75	71	67	64	60	53	46	39	32	26	19	13
24°	96	92	88	85	81	77	74	70	66	63	55	49	43	37	31	26	21
27°	96	93	90	86	82	79	76	72	68	65	59	53	47	41	36	31	26
30°	96	93	90	86	82	79	76	73	70	67	61	55	50	44	39	35	30
33°	96	93	90	86	83	80	77	74	71	68	63	57	52	47	42	37	33
36°	97	93	90	87	84	81	78	75	72	70	64	59	54	50	45	41	36
39°	97	94	91	88	85	82	79	76	74	71	66	61	56	52	47	42	30

El termómetro húmedo se supone ventilado en una co-

rriente de aire de velocidad 3 m seg

Ejemplo de aplicación.—Se han leído $t=21^\circ$; $t_1=19^\circ,5$ Se tiene: $t-t_1=1^\circ,5$

⁽¹⁾ Tomada de las "Smithsonian Physical Tables" (tabla 214).

La humedad relativa dada en la tabla es: 87 % y el valor del estado higrométrico buscado: E=0.87. Para temperaturas intermedias, se interpola, si hay necesidad, por una proporción simple y directa.

§ 292. Sistema sólido - vapor - Volatilización y sublimación.—Numerosos cuerpos sólidos presentan la particularidad de que, calentados, sin llegar a la temperatura de fusión, se vaporizan, pasando directamente del estado sólido al gaseoso. Este cambio es la volatilización.

En general, los vapores producidos, al encontrar una pared

fría se condensan en cristales sólidos, pasando directamente de la fase gaseosa a la sólida. Este cambio de estado se llama sublimación.

En el laboratorio de química y en la industria se emplea la sublimación como un método para purificar numerosos cuer-

La fig. 504 muestra un clásico dispositivo para extraer el ácido benzoico del

benjuí.

El ácido benzoico se volatiliza al calentar el benjuí en el recipiente de hierro y luego se deposita por sublimación en forma de cristales puros en el interior del cono de papel.

Fig. 504.—Obtención del ácido benzoico por sublimación.

Muchos sólidos dan vapores a cualquier temperatura; la percepción de olores de muchos cuerpos sólidos se explica por

su volatilización.

El sistema sólido-vapor tiene condiciones de equilibrio de fases análogas al sistema líquido-vapor.

Para cada temperatura, hay una tensión de vapor saturado, y puede trazarse la respectiva curva de sublimación.

Regnault estudió las tensiones de vapor del hielo con el dispositivo de la figura 505.

El tubo A es un tubo de Torricelli que

mide la presión atmosférica.

El tubo B, con el extremo doblado sumergido en una mezcla frigorífica, contiene agua que destila y se solidifica formando hielo.

La tensión p = (760 — h), mide la tensión de vapor del hielo, o sea la tensión de volatilización. Los valores que

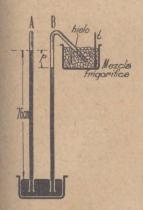


Fig. 505.—Medida de la tensión de vapor del hielo.

siguen corresponden a las medidas de Juhlin y a ellos se refiere el gráfico de la figura 506.

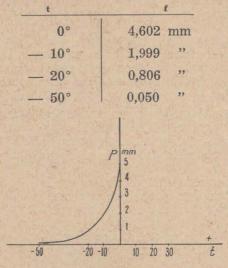


Fig. 506.—Tensión del vapor de hielo en función de la temperatura.

Existe un calor de volatilización, que es el número de calorías necesarias para volatilizar un gramo de sustancia; se integra por la suma del calor latente de volatilización y el calor externo (empleado en ejecutar trabajo exterior).

Fig. 507.—Curvas de equilibrio sólido-liquido-vapor y punto triple.

§ 293.—Punto triple.—Trazan-'do las curvas de fusión, de vaporización y de sublimación de una sustancia pura, las tres tienen un punto común, llamado punto triple. La figura reprerepresenta las curvas de equilibrio de 2 fases para el agua.

El punto A es

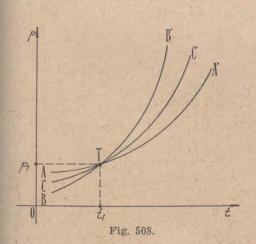
el punto triple; su posición corresponde a los valores

p = 4,6005 mm t = 00,008

Para valores de p y t que correspondan a puntos de las curvas AB, AC ó AD, el agua puede estar en equilibrio en dos fases.

Para los valores de p y t correspondientes al punto triple A, pueden estar sus tres fases en equilibrio: sólida, líquida y gaseosa.

Para la temperatura 0°,008, la tensión de vapor del agua y la del hielo son iguales a 4,6005 mm de mercurio y puede así tenerse hielo, agua y vapor en equilibrio.


No hay más que estos valores que permitan ese equilibrio; por eso se dice que el sistema de las 3 fases en equilibrio es un sistema invariante.

Para presiones y temperaturas arbitrariamente tomadas, en general se tendrán puntos representativos situados entre las curvas, pudiendo caer en la zona del sólido, del líquido o del vapor. Se tendrá el agua en equilibrio de una sola fase.

Como se fija por dos parámetros elegidos libremente, se

dice que es un sistema bivariante.

§ 294.—Transformaciones alotrópicas y polimorfas (sistema sólido-sólido).—Las transformaciones entre dos fases sólidas de la misma sustan-

cia pura se llaman transformaciones polimorfas.

Cuando la sustancia pura es un cuerpo simple se la denomina también alotrópica.

Es indispensable establecer que las dos fases sólidas difieren solamente por sus propiedades físicas, pero dan el mismo líquido al fundir y vapores idénticos por volatilización.

Las transformaciones polimorfas se clasifican

en dos grupos: a) cuando se pasa de una fase a otra por trans-

formación a temperatura constante y bajo la presión atmosférica, se llaman *enantiotropas*. b) Cuando una sola de ellas es estable bajo la presión atmosférica y la otra se obtiene por sobrefusión o sobresaturación, se llaman *monotropas*.

Se representan en el diagrama de la figura 508 con la línea AA' la curva de fusión de una de las fases, con la BB' la correspondiente a la fusión de la segunda fase, y con CC' la curva

de transformación.

El punto T representa un punto triple; a la presión p y temperatura t₁ pueden estar en equilibrio las dos fases sólidas y su líquido de fusión. Trazando las curvas de volatilización de las fases sólidas se determinan otros dos puntos triples de equilibrio para vapor, líquido y sólido.

Analicemos el caso del azufre, cuerpo que tiene dos formas alotrópicas bien definidas: el azufre octaédrico (cristaliza en octaedros ortorrómbicos y funde a 113°,5) y el azufre prismático (cristaliza en prismas del sistema monoclínico que fun-

de a 119°,5 a la presión normal).

Por debajo de 95°,6 la forma octaédrica es estable; a mayor temperatura lo es la prismática, pero ambas pueden aparecer a cualquier temperatura como formas de equilibrio inestable (fase metaestable).

La transformación se hace bajo la presión atmosférica y es reversible; por tanto, es enantiotropa.

Como todo cambio de estado, tiene su calor de transfor-

mación: vale 2,7 calorías gramos a la presión atmosférica normal.

La transformación de fósforo blanco en rojo, en el vacío y a temperatura elevada es monotropa.



Fig. 509.—Flores de hielo ordinario (A).

Citaremos como cuerpos polimorfos:

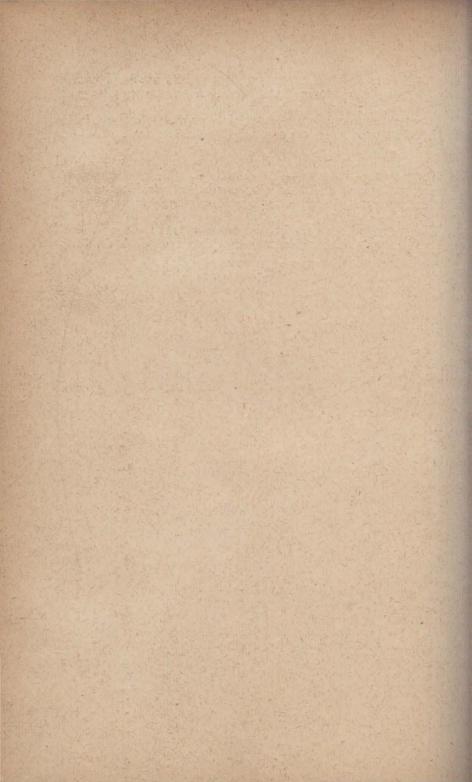
I. Simples.—
Antimonio, arsénico, carbono, estaño,
hierro, fósforo, selenio y
azufre.

II. Compuestos. — Carbonato de calcio (calcita, ara-

gonita), ioduro de plata, sulfuro mercúrico, nitrato de plata, sulfato de potasio, ácido acético, hidroquinona, fenol, y muchos otros, entre los que se cuenta el agua.

Según Tammann, además del hielo ordinario que cristaliza en sistema romboédrico o exagonal (hielo A), existen otras dos

variedades.


Elevando la presión a 2350 megabarias se tiene a — 80° el

hielo B y entre — 30° y — 60° el hielo C.

Ambas formas se diferencian por la contracción que sufre al transformarse el hielo A y por el aumento de volumen al fundir.

Por proyección de un haz luminoso a través de una lámina de hielo, se obtienen las imágenes de flores de hielo (cristales) por la figura 500

tales) reproducidas en la figura 509.

CAPÍTULO XXIV

CONTINUIDAD DE LOS ESTADOS LÍQUIDO Y GASEOSO FENÓMENOS CRÍTICOS - VAPORES Y GASES LIQUEFACCIÓN DE GASES

§ 295.—Continuidad de los estados líquido y gaseoso.— Se ha visto, en el estudio de la vaporización, que, si se comprime un vapor a temperatura constante, el volumen disminuye hasta que se convierte en vapor saturado. Si continuamos comprimiendo, comienza a licuarse, de modo que tendremos vapor

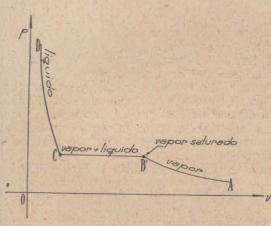
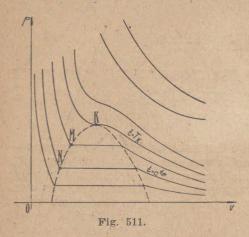


Fig. 510.

y líquido, hasta que se licúa totalmente, y sólo tendremos líquido cuyo volumen varía muy poco con la presión. La curva ABCD representa este proceso (fig. 510) 1.

Si con el mismo vapor realizamos sucesivamente esta experiencia a temperaturas cada vez mayores, observaremos que los puntos B y C se en-


cuentran cada vez más próximos, o sea que el volumen ocupado por toda la masa en estado de vapor saturado disminuye con la temperatura, mientras crece el de la masa en estado líquido a la misma temperatura.

Si continuamos aumentando la temperatura llegará a un valor para el cual el líquido y el vapor saturado ocupan igual volumen, o sea, tienen la misma densidad. Esta temperatura se

¹ Los trozos AB y CD responden a la ecuación de Van der Waals (p + a) (v-b) = RT,

llamada ecuación de estado de los flúidos reales, en la que a y b son constantes propias de cada gas.

llama temperatura crítica (T_k) . El punto K (fig. 511) en el cual se verifica la transformación se denomina punto crítico;

la presión y volumen correspondientes son la presión crítica y el volumen crítico. A esa temperatura el calor de vaporización del líquido es nulo.

A toda otra temperatura superior a la crítica el vapor no se licúa por mucho que se comprima, y entra en la categoría de gas.

De acuerdo con esto, llamaremos temperatura crítica a la temperatura por encima

ra por encima de la cual no es posible licuar el gas por simple compresión.

Las curvas de la fig. 511 se conocen como isotermas de

Andrews, que fué quien primero las determinó.

Estas experiencias nos dicen que es posible pasar en forma continua de la sustancia en estado de vapor al estado líquido sin que se produzca la discontinuidad que supone la condensación. Para ello bastará calentar hasta la temperatura crítica, comprimir hasta alcanzar el punto K y luego enfriar siguiendo la curva KMN que corresponde al estado líquido.

Los puntos críticos de algunas sustancias son los siguientes:

	$T_{\mathbf{k}}$	Presión crítica atm	Volumen crítico dm ³ /Kg
Agua Anhídrido carbónico Amoníaco Hidrógeno Helio Oxígeno Nitrógeno	$ \begin{vmatrix} + & 374^{\circ} \\ + & 31^{\circ}, 4 \\ + & 132^{\circ} \\ - & 241^{\circ} \\ - & 267^{\circ}, 8 \\ - & 119^{\circ} \\ - & 145^{\circ} \end{vmatrix} $	225 75 116 13 3 52 35	3,1 2,15 — 32 2,32 — 3,2

§ 296.—Vapores y gases.—Los fenómenos críticos nos permiten diferenciar entonces los gases y los vapores. A temperaturas menores que la temperatura crítica tendremos vapores. Más allá del punto crítico tenemos gases que no podrán licuarse por compresión isoterma.

Se comprueba que al alejarse del punto crítico, el gas se acerca cada vez más a las condiciones de gas ideal, es decir, cumple más rigurosamente las leyes de Boyle-Mariotte y de Gay-Lussac.

§ 297.—Liquefacción de gases.—De lo dicho se desprende que todo gas puede licuarse con tal de que se lo enfríe por debajo de su punto crítico. En la actualidad se ha conseguido licuar todos los gases, incluso el helio, que se creyó fuera un gas permanente.

Hasta 1877 se llamaban gases permanentes al N2, O2, H2, CH4 (metano), CO (óxido de carbono) y NO (bióxido de ni-

trógeno).

En ese año, Cailletet y Pictet licuaron algunos de esos gases con un aparato en el cual podían alcanzar presiones hasta de 1 000 atmósferas.

El gas comprimido, se enfriaba y licuaba al disminuir bruscamente la presión. Así licuaron el anhídrido carbónico a temperatura ordinaria, pero en realidad es un vapor, pues su temperatura crítica es 31°,5.

*Consiguieron licuar hasta oxígeno, cuya temperatura crítica es — 119° con un aparato formado por 3 refrigerantes "en cascada" (figura 512). En el primero, evaporando anhídrido sulfuroso se enfría a - 70° y con él se enfría anhídrido carbónico líquido que, evaporado por aspiración, se enfría hasta -130°. Este CO. se utiliza para enfriar oxígeno fuertemente comprimido

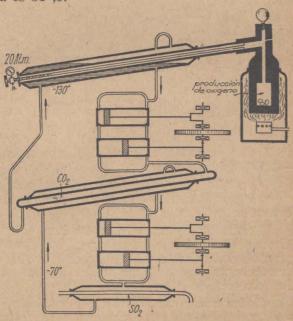


Fig. 512.—Instalación en cascada para licuar gases.

que entonces se licúa a 20 atmósferas.

Posteriormente, Linde construyó una máquina en que se enfriaba el gas por aplicación del efecto Joule-Thomson.

Se conoce con ese nombre el efecto por el cual todos los gases se enfrían al dejarlos expandir bruscamente sin realizar trabajo exterior. El único que se calentaba en esas condiciones era el hidrógeno, pero se comprobó que por debajo de — 80°,5 también se enfría.

La máquina de Linde consta de un compresor, donde se comprime el gas. Se deja luego expandir, con lo cual su temperatura disminuye y el gas así frío se utiliza para enfriar el nuevo gas que se comprime, que al expandirse se enfriará más, y así sucesivamente. Las cañerías concéntricas permiten realizar este proceso. Se obtiene así industrialmente el aire líquido.

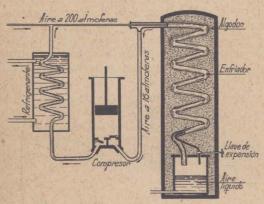


Fig. 513.—Aparato de Linde para liquefacción de gases.

Una especie de destilación fraccionada permite obtener nitrógeno y oxígeno a partir del aire líquido.

El hidrógeno, cuyo punto crítico está próximo a — 240°, se licúa, enfriándolo primero a — 205° en aire líquido en ebullición y utilizando luego un aparato de funcionamiento semejante al de Linde. En contacto con hidrógeno líquido el ai-

re líquido se solidifica y el hidrógeno se enfría y solidifica a — 259° dejándolo hervir.

Con hidrógeno sólido se enfría el helio, cuyo punto crítico es aproximadamente — 268° (5° absolutos) y por expansión brusca se lo licúa.

Temperaturas más bajas se han obtenido en el famoso laboratorio de Kamerlingh Onnes, en Leyden, aprovechando la propiedad de ciertas sustancias de absorber calor al suprimir bruscamente el campo magnético en que se hallan colocadas. Actualmente se ha alcanzado menos de un grado absoluto.

Todos esos gases licuados presentan un aspecto semejante: son transparentes, poco viscosos y de coloración ligeramente azulada. Sus puntos de ebullición se toman como puntos fijos a baja temperatura.

En la tabla siguiente consignamos algunos datos interesantes:

TABLA XXVIII

Gas	densidad	Punto de ebullición	Calor de vaporización
Aire Oxígeno Argón CO Nitrógeno Neón Hidrógeno Helio	0,8—1,2 1,2 — 0,8 — 0,08 0,15	— 181,4° a — 195,7 — 182,987° — 185,66° — 191,47° — 195,98° — 245,92° — 252,75° — 268,88°	50 cal a — 190

Fig. 514.—Vaso de Dewar para gases liquidos.

Con estos líquidos se opera en recipientes de doble pared, entre las cuales se ha hecho el vacío (vaso Dewar, análogo a los "termos" corrientemente usados) (fig. 514).

§ 298.—Hielo seco.—Un gas que se está utilizando en gran escala en estado sólido es el anhídrido carbónico, que se emplea para reemplazar el hielo. Se obtiene fácilmente en el laboratorio inclinando un tubo de anhídrido carbónico comprimido de modo que quede con el pico de salida más bajo que el resto del tubo. Abriendo el robinete, como a temperatura ordinaria y a la presión en

que está en el tubo, una buena parte se encuentra en estado líquido, sale un chorro que, por la expansión y evaporación brusca, se enfría fuertemente y se solidifica, recogiéndolo en un paño que envuelve el pico de salida (fig. 515).

En la obtención industrial se aplica un procedimiento basado en el mismo principio, pero en tal forma que el vapor no solidificado, vuelve al compresor y repite el proceso.

Su punto de sublimación es de —78°,5 C y tiene la ventaja, con respecto al hielo, de no dejar residuo ni humedad. Su densidad es 1,56 y su calor de vola-

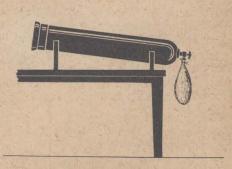


Fig. 515.—Obtención de hielo seco.

tilización es de 137 calorías, necesitando en total 152 calorías por gramo para llegar a 0° C. Se observa que el rendimiento por unidad de peso es muy parecido al del hielo común.

§ 299.—Máquinas frigoríficas.—Una aplicación importante del calor que absorbe un líquido al evaporarse es la de las máquinas frigoríficas, cuyo principio de funcionamiento analizaremos en la figura 516.

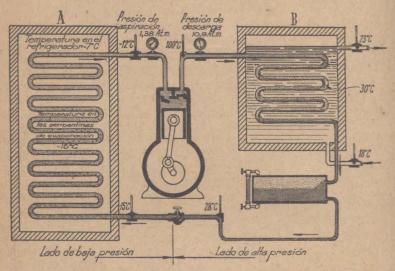


Fig. 516.—Esquema de máquina frigorífica.

Un circuito cerrado lleno de amoníaco, anhídrido sulfuroso u otra sustancia apropiada, está constituído por dos serpentines y un compresor.

En uno de los serpentines A se evapora el líquido, por la succión del compresor, absorbiendo calor. En el otro (B) se condensa y abandona calor al salir del compresor. El primero constituye el refrigerante y el otro el condensador.

El condensador se enfría por circulación de aire o agua, según la capacidad de la instalación.

Las presiones y temperaturas indicadas en la figura, dan idea de la marcha del fenómeno.

CAPÍTULO XXV

DIFUSIÓN - ÓSMOSIS - PRESIÓN OSMÓTICA

§ 300.—Difusión.—Se llaman fenómenos de difusión aquellos en que se produce la penetración de unas sustancias en otras. Se trata de fenómenos de naturaleza molecular y los casos más corrientes son los de difusión de líquido en líquido, gas en gas, gas en líquido y gas o líquido en sólido. Se admite que en algunos casos ha llegado a producirse difusión de sólido en sólido (oro en plomo).

En algunos casos en que una pared porosa separa gases,

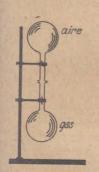


Fig. 517.—Difusión de gases.

se produce difusión de uno de ellos hacia la pared, que el gas atraviesa y sale hacia el otro lado; entonces el fenómeno se llama efusión.

Si la pared es tal que sólo la atraviesa un solo gas de una mezcla de gases o sólo el solvente de una solución, la pared se llama semipermeable.

Es fácil observar fenómenos de difusión. Para gases basta tomar dos frascos, uno con aire y otro con gas más pesado y unirlos por sus bocas. Aunque se coloque el gas más pesado hacia abajo, al cabo de cierto tiempo se observará que en los dos frascos hay una mezcla homogénea de ambos gases.

Se ha producido la difusión de uno en el otro

(fig. 517).

Para difusión en líquidos es necesario que sean líquidos miscibles y que no reaccionen químicamente. Si en un vaso con agua se vierte con mucho cuidado un poco de alcohol coloreado como para que flote en la parte superior, se observará que la superficie de separación pierde nitidez y poco a poco el alcohol se difunde en toda la masa líquida.

Un método para estudiar los fenómenos de difusión, consiste en colocar dentro de un re-

Fig. 518.— Difusión de un liquido en otro.

cipiente con agua un frasco con el líquido cuya difusión se quiere estudiar. Se destapa por un dispositivo especial y después de

un tiempo se determina la cantidad de sustancia que se ha di-

fundido en el agua (fig. 518).

Estos fenómenos se explican por la teoría cinética de la materia; las moléculas de uno de los líquidos o gases que llegan a la superficie de separación, chocan con las del otro y progresivamene se van penetrando mutuamente.

Llamamos concentración de un componente en un punto, a la relación entre la masa de ese componente y la masa total en

un pequeño volumen rodeando a ese punto.

En general, observamos que cada gas o líquido se difunde hacia la zona en que disminuye su concentración.

Si medimos la cantidad q de sustancia que en el tiempo t atraviesa una superficie s entre dos puntos situados a la distancia \bar{t} en los cuales las concentraciones son c_1 y c_2 , tendremos:

$$q = k \cdot s \cdot \frac{c_2 - c_1}{l} t$$

siendo k el coeficiente de difusión.

Se suele expresar midiendo el tiempo en días y la longitud en centimetros. O bien en unidades c. g. s.

Para la difusión en agua de una solución saturada de sal de mar se

ha encontrado el coeficiente:

$$k = 108 \times 10^{-7} \frac{cm^2}{seg} = 0,93 \frac{cm^2}{dia}$$

§ 301.—Efusión.—Se produce cuando una pared porosa de yeso, magnesia u otra sustancia, separa dos gases diferentes. En ese caso se mezclan a través de la pared, pero la velocidad

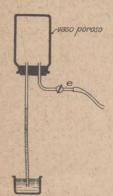


Fig. 519.—Aparato para comprobar la efusión del hidrógeno.

de pasaje es diferente para cada gas. La ley de Graham dice que la velocidad de pasaje es proporcional a la presión del gas e inversamente proporcional a la raíz cuadrada de su densidad.

Esta ley concuerda con lo que se podría

prever en base a la teoría cinética.

Una experiencia sencilla puede realizarse con un vaso poroso de porcelana (fig. 519). Se tapa de modo que haga un buen cierre, con un tapón con dos agujeros, en uno de los cuales se coloca un tubo recto que al colocarlo invertido, se sumerge en agua coloreada. Por el otro se hace llegar hidrógeno que burbujea en el agua. Cuando se haya desalojado todo el aire se suspende la llegada del hidrógeno y se cierra el tubo lateral. Se observará entonces que el líquido asciende por el tubo. Eso es debido a que la velocidad

de difusión del hidrógeno hacia el exterior es mayor que la del aire hacia el interior, por lo cual se produce un descenso de la presión.

También se producen fenómenos de difusión de gases a través de paredes sólidas. Una lámina delgada de caucho es atravesada por el oxígeno con una velocidad 2.5 veces mayor que por el nitrógeno.

Por eso, si se hace pasar aire por una membrana de caucho. su riqueza en oxígeno aumenta del 21 al 40 %.

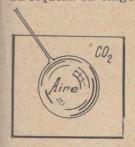


Fig. 520.—Una pompa de jabón colocada en CO2 aumenta de volumen hasta explotar por la difusión que se produce a través de sus paredes.

La difusión de gases a través de líquidos puede observarse haciendo flotar en anhídrido carbónico una pompa de jabón llena de aire. Aumenta de volumen hasta romperse por efecto del anhídrido carbónico que la atraviesa.

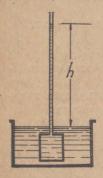
Las paredes semipermeables, como hemos dicho, se caracterizan por dejar pasar un solo gas, deteniendo todos los demás. El platino, el cuarzo y el paladio, calentados al rojo, dejan pasar el hidrógeno y detienen los demás gases. En un recipiente cerrado y con un tubito lateral de platino, llenado con hidrógeno, se obtiene un buen vacío calentando al rojo el platino con una llama que no contenga hidrógeno. Recíprocamente, con llama de hidrógeno

aumenta la presión en el interior del recipiente (fig. 521).

§ 302.—ósmosis.—Los fenómenos osmóticos se producen por la difusión de líquidos a través de membranas semipermea-

bles, que se caracterizan por dejar pasar unas sustancias e impedir el pasaje de otras.

En la naturaleza existen membranas semipermeables, como la envoltura del protoplasma de las células vegetales, el pergamino, etc.


Si tomamos una célula vegetal y la sumergimos en agua pura, como en su inte- Fig. 521.-Difusión rior posee una solución con 7,5 de cloruro hidrógeno, a través de de sodio por litro, el agua penetra al interior y como la sal no sale, aumenta de volu-

platino al rojo.

men hasta romperse. Inversamente, colocada en una solución de sal de mayor concentración que la propia, disminuye de volumen, pues el agua sale hacia el exterior.

Se obtienen también membranas semipermeables artificiales. Las que dan mejor resultado son las de Traube, obtenidas colocando en un vaso poroso una solución de ferrocianuro de potasio y sumergiéndolo en otra solución de sulfato de cobre. En el interior de los poros se forma un precipitado de ferrocianuro de cobre, que constituye una membrana semipermeable caracterizada por dejar pasar el agua y detener sustancias disueltas, como, por ejemplo, el azúcar.

La comprobación se realiza en las siguientes condiciones: se pega al vaso en que se ha formado la membrana semipermeable, un largo tubo de vidrio. Se lo llena hasta cierto nivel con una solución cualquiera, supongamos que sea de azúcar, y se sumerge en agua pura. Se observará que el nivel asciende en el tubo, pues el agua pasa a través de la membrana semipermeable. Alcanzará así una altura h que mide el exceso de presión de la solución con respecto al solvente puro. Esa presión es la presión osmótica de la solución (fig. 522).

En las soluciones diluídas (pequeña concentración) se comprueban las siguientes leyes:

Fig. 522.—Presión osmótica.

1º) La presión osmótica de la solución es proporcional a la concentración.

2°) Es proporcional a la temperatura absoluta. Resulta, pues, una ley análoga a la de la presión en los gases perfectos (§ 244):

pV = nRT (Ley de Van't Hoff)

siendo n el número de moles disueltos en el volumen V y R la constante de los gases.

Esta fórmula vale para las soluciones no electrolíticas, es decir, para las soluciones que no se descomponen por efecto de la corriente eléctrica.

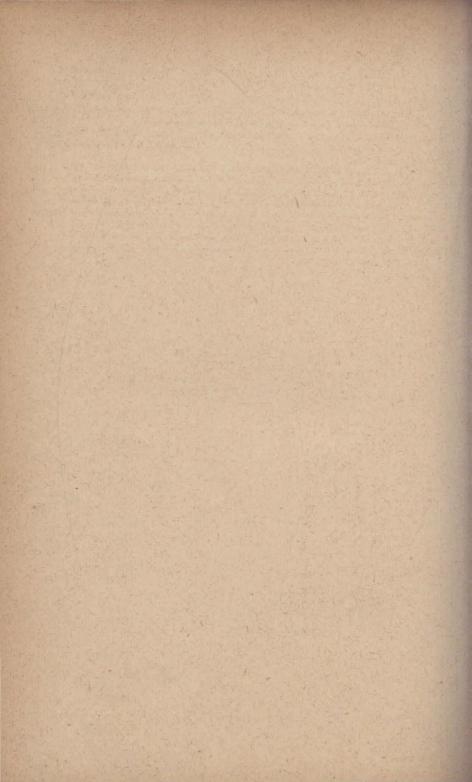
En las soluciones electrolíticas (de ácidos, bases o sales) la presión que se obtiene es mayor que la que correspondería según la ley de Van't Hoff. Este hecho se explica admitiendo que una parte de las moléculas disueltas se disocia, es decir, que se divide en dos o más partes llamadas iones. Con ello aumenta el número de partículas de sustancia disuelta (soluto) y se comportará como si hubiera aumentado el número n de moles que interviene en la fórmula. A este fenómeno aludiremos al estudiar la conductibilidad eléctrica de las soluciones en el curso de electricidad.

Dos soluciones de igual presión osmótica se llaman isotónicas. El hecho de disolver una sustancia trae aparejada modificaciones en la tensión de vapor y en los puntos de ebullición y congelación del solvente. Las leyes que rigen esas modificaciones y los nombres que recibe su estudio son los siguientes:

1º La tensión de vapor de la solución es menor que la del solvente puro a igual temperatura (tonometria).

24) El punto de ebullición de la solución es más alto que el del solvente puro a igual presión (ebu-Rometría).

3*) El punto de congelación de la solución es inferior al del solvente puro (criometría).


Las leyes de Raoult establecen que dichas modificaciones son proporcionales al número de moles de sustancia disuelta en la unidad de volumen

de solución.

En las soluciones isotónicas adquieren el mismo valor. Así por ejemplo: una molécula gramo de azúcar (342 g) disuelta en diez litros de agua y una de urea (60 g) también disuelta en 10 litros de agua, constituyen soluciones isotónicas. Ambas tienen igual presión osmótica y además, igual tensión de vapor, por lo que hierven y se congelan a la misma temperatura.

Las medidas de los ascensos del punto de ebullición o los descensos de la tensión de vapor o el punto de congelación, se aplican a la deter-

minación de pesos moleculares.

CAPÍTULO XXVI

MÁQUINAS TÉRMICAS

§ 303.—Se llaman máquinas o motores térmicos a aquellas

máquinas que transforman energía térmica en trabajo.

Existen de dos tipos; en unas, la fuente de calor es exterior al motor propiamente dicho: máquinas de vapor y turbinas de vapor. En otras, es interior y se llaman motores de combustión interna: motor de explosión, motores diesel y semi-diesel.

Todos funcionan tomando calor de una fuente caliente y entregando a una fuente fría el que no se ha transformado en

trabajo.

Se llama rendimiento a la relación entre el trabajo realizado y el calor tomado a la fuente caliente.

$$\eta = \frac{\mathrm{L}}{\mathrm{Q}}$$

Fig. 523.—Modelo de la primera máquina térmica construída por Herón de Alejandria.

La primera máquina térmica data de Herón de Alejandría quien construyó una esfera con dos picos en que el vapor que salía por ellos producía su rotación. Se basa en el principio del molinete hidráulico y la turbina de reacción.

Pero el cilindro con pistón móvil data de Papin (1690), y la primera máquina de vapor fué construída por Savery (1618) y Newcommem (1705) (fig. 524).

A pesar de eso, a mediados del siglo pasado, después de los estudios de

Sadi Carnot sobre el calor y en particular su estudio sobre lo que se llama el segundo principio de la termodinámica, comple-

mentados especialmente por Clausius y W. Thomson, sólo

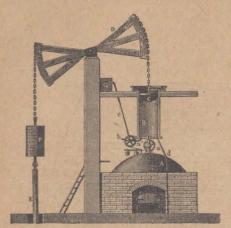


Fig. 524.—Máquina de vapor de Savery y Newcommen.

entonces comenzó el estudio racional de las máquinas térmicas. Los rendimientos, que eran muy bajos, mejoran extraordinariamente a partir de esa época.

§ 304.—Motor a émbolo de simple efecto.—La máquina de vapor de simple efecto es la más sencilla de todas. Por un tubo a (fig. 525) llega al cilindro el vapor de la caldera, que, siendo su presión mayor que la atmosférica, actúa sobre el pistón desplazándolo y trasmitiendo su movimiento al volante

V. En la mitad de la carrera se suspende la entrada de vapor, y el que está en el cilindro continúa expandiéndose. Al llegar

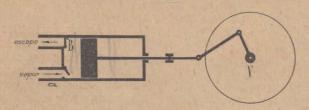


Fig. 525.—Máquina de vapor de simple efecto.

al final del recorrido, se abre la válvula en B y el volante, que ha adquirido cierta velocidad, produce el retroceso del pistón y la expulsión del vapor. En este instante se inicia nuevamente el proceso.

§ 305.—Motor de doble efecto.—Para aumentar la potencia y la regularidad de funcionamiento se construye el motor de doble efecto en el cual el vapor acciona sobre ambas caras del pistón. Para ello es necesario un sistema de distribución del vapor que oportunamente lo envíe hacia uno u otro lado del cilindro, y al mismo tiempo comunique el restante con el exterior. En la figura 526 se puede analizar el funcionamiento. El dis-

tribuidor se mueve por un vástago vinculado al mismo eje del

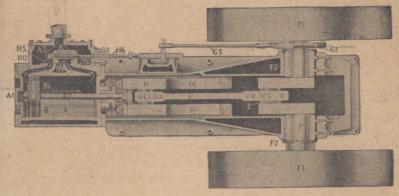


Fig. 526.—Corte de una máquina de vapor de doble efecto. El vástago Ho desplaza al distribuidor H.

volante. En ambos lados del émbolo se produce el proceso indicado para la máquina de simple efecto.

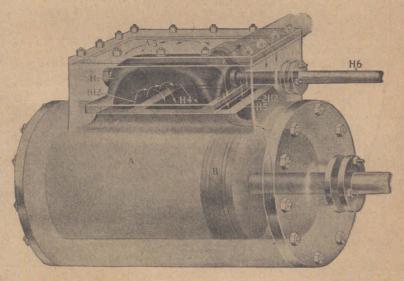


Fig. 527.—Vista por trasparencia del émbolo y distribuidor en la máquina de vapor.

En la posición de la figura 526, por la cámara A₃, que está unida a la caldera, llega el vapor a la cara izquierda del émbolo, mientras sobre la cara de la derecha actúa la presión atmos-

férica, pues la cámara A está vinculada al exterior por intermedio de H_4 . Cuando el émbolo llega al final de su carrera hacia la derecha, el distribuidor se corre vinculando la cámara A con A_3 y la A_1 con H_4 , invirtiéndose la acción de las presiones.

§ 306.—Ciclo en la máquina de vapor.—Hemos mencionado ya el segundo principio de la termodinámica diciendo que, es imposible construir un motor cuyo único efecto exterior sea realizar un trabajo y enfriar una única fuente de calor.

De modo que no es posible idear máquinas térmicas sin dos

fuentes de calor, una caliente y otra fría.

En la máquina de vapor que hemos descripto la fuente caliente es la caldera que proporciona vapor y la fuente fría es la atmósfera si el escape se produce directamente a ella.

En algunos casos se utiliza un condensador, donde se condensa el vapor del escape y que constituye la fuente fría.

Del principio de Carnot se deduce que si la temperatura absoluta de la fuente caliente es T_1 y la de la fuente fría T_2 , el rendimiento podrá llegar, como límite, al valor:

$$\eta = \frac{\mathrm{T}_1 - \mathrm{T}_2}{\mathrm{T}_1} \tag{1}$$

y ello, en un motor perfecto en que el gas que interviene en el funcionamiento experimente cuatro transformaciones sucesivas, que constituyen lo que se conoce como ciclo de Carnot.

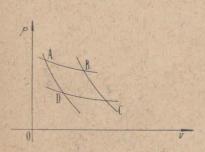


Fig. 528.—Ciclo de Carnot.

Este ciclo consiste en lo siguiente: primero una expansión a temperatura constante igual a la de la fuente caliente (isotérmica); luego, el gas continúa expandiéndose sin ganar ni perder calor (se llama expansión adiabática), y como realiza trabajo exterior, se enfría; cuardo llega a la temperatura de la fuente fría, se comprime isotérmicamente, y, finalmente, se comprime nuevamente sin ganar ni perder calor (adiabática-

mente) hasta que su temperatura sea igual a la de la fuente caliente.

Tomando ejes coordenados p y v este proceso está representado por el cuadrilátero ABCD. En ese diagrama el trabajo está representado por el área ABCD (fig. 528).

En base a esto, el perfeccionamiento de los motores térmicos ha consistido en tratar que el ciclo que realizan se apro-

xime al ciclo ideal de Carnot, con el cual el rendimiento se aproxima al de la fórmula [1].

De esa fórmula deducimos que, a igualdad de temperatura de la fuente caliente, el rendimiento mejora aumentando la diferencia $T_1 - T_2$ entre las temperaturas de ambas fuentes,

En las máquinas de vapor, el ciclo que realmente realiza el vapor es el de la figura 529. Durante una primera parte de la carrera del émbolo (aproximadamente ¼), entra vapor a temperatura y presión prácticamente constantes (admisión); luego se cierra la entrada y el vapor se expande según 2-3 (expansión aproximadamente adiabática); en seguida el émbolo retrocede expulsando el vapor a la presión aproximadamente constante del exterior o del condensador (expulsión); y antes de llegar al final se cierra el escape y se comprime el resto de vapor que ha quedado, alcanzando una temperatura próxima a la del vapor de admisión (compresión 4-1).

Los cuatro tiempos: admisión, expansión, expulsión y compresión, corresponden aproximadamente a los del ciclo de Carnot. Sobre el diagrama, un corte del cilindro muestra la carrera D-E del émbolo y las posiciones en que inicia los cuatro tiempos. Debajo se muestra la duración relativa de cada tiem-

po, por los ángulos de un diagrama circular.

§ 307.—Indicador de Watt.—Para obtener las curvas de la fig. 529 se utiliza el indicador de Watt, que se acopla directa-

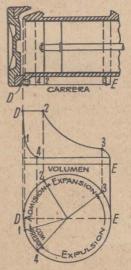


Fig. 529.—Ciclo real en máquina de vapor.

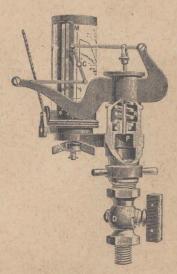


Fig. 530.—Indicador de Watt.

mente al cilindro (fig. 530). La presión actúa directamente sobre un pistón P, cuyos desplazamientos son proporcionales a las presiones debido al resorte R. Estos desplazamientos se inscriben en un cilindro M, que gira accionado por el émbolo de la máquina, en forma tal que a cada posición del émbolo corresponde una posición del cilindro. Estas rotaciones son alternativas como el movimiento del émbolo.

Así, se obtiene una curva en que las ordenadas representan presiones en una cierta escala que depende del resorte y las abscisas representan los volúmenes barridos por el émbolo.

§ 308.—Turbinas de vapor.—No pueden dejar de mencionarse las turbinas de vapor que en cierto tipo de aplicaciones

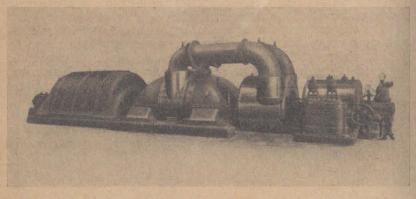


Fig. 531.—Turbina de vapor de 20 000 Kw y 3 000 rev. por minuto.

sustituyen con ventaja a los motores a émbolo. Se obtienen gran-

Fig. 532.—Principio de la turbina de acción.

des velocidades y potencias enormes con máquinas relativamente pequeñas. En la figura 531 se reproduce una fotografía de una turbina de vapor cuya potencia es de 20 000 Kw (27.000 H. P.) y marcha a 3 000 revoluciones por minuto.

En las turbinas el vapor actúa sobre pequeñas paletas llamadas álabes que van colocadas en la periferia de una rueda (fig. 532). Existen dos tipos: de acción (Laval) y de reacción (Parson). En las turbinas de acción el vapor adquiere gran velocidad an-

tes de llegar a la rueda, en conductos llamados toberas, y al chocar con los álabes de la rueda le imprime el movimiento de rota-

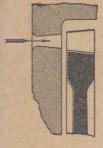


Fig. 533.—Corte de la turbina de acción a la altura de los álabes.

ción (fig. 532). En la figura 533 pueden observarse dos cortes de una turbina de acción. El de la parte superior es un corte radial (con un plano que contiene al eje de rotación). El de la parte inferior se ha realizado según un plano perpendicular al anterior a la altura de los álabes.

Se observa la dirección y forma de la tobera, que está fija, por la que pasa el chorro de vapor que choca con los álabes de la rueda móvil. Se

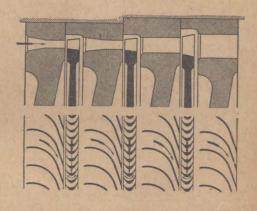


Fig. 534.—Corte de una turbina de reacción a la altura de los álabes.

construyen también con varias ruedas movibles colocadas entre

toberas fijas.

En las turbinas de reacción el vapor llega a la rueda a una velocidad relativamente pequeña, y los álabes tienen forma tal que en ellos el vapor aumenta su velocidad imprimiéndole por reacción una velocidad en sentido contrario. Generalmente la turbina consiste en un conjunto de ruedas montadas sobre el mismo eje, que giran entre álabes fijos a la carcasa, como puede verse en el corte de la figura 534.

A medida que el vapor recorre la turbina, se va enfriando y la presión disminuye aumentando correspondientemente el volumen, de modo que el rotor está formado por ruedas cuyos diámetros crecen desde la entrada (zona de alta presión), hasta

el escape (baja presión).

Son comunes las turbinas combinadas, en que la primera parte (alta presión) es el tipo de ación y la segunda de reac-

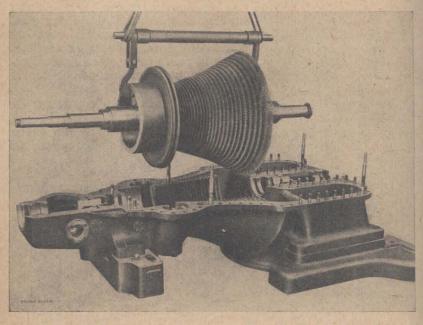


Fig. 535.—Rotor de una turbina combinada de acción y reacción.

ción. La figura 535 muestra el rotor y la parte inferior de una de ellas.

§ 309.—Motor de explosión.—Son los motores más utilizados en los vehículos automotores por la sencillez de su puesta en marcha, su poco peso y reducido dumen.

Son de cuatro tiempos. El cilindro posee dos válvulas, de admisión y de expulsión y una bujía destinada a producir una

chispa en el momento oportuno (fig. 536).

Imaginemos el émbolo en la parte superior de su recorrido. Al descender se abre la válvula de admisión y penetra una mezcla de nafta y aire (mezcla carburante), al subir el émbolo se comprime fuertemente (compresión), y cuando llega al final de su carrera se produce una chispa en la bujía que provoca la inflamación y expansión de los gases (explosión y expansión) que actúan sobre el émbolo llevándolo hasta el final de su recorrido. Finalmente, el émbolo sube mientras se abre la válvula por donde escapan los gases de la combustión (expul-

sión). El ciclo realizado se representa en el diagrama de la figura 537.

De los cuatro tiempos admisión, compresión, explosión y expansión y expulsión, sólo en el tercero actúa la fuerza motriz.

Por eso, si se quiere hacer funcionar un motor de un solo

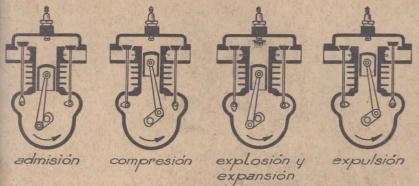


Fig. 536.—Esquema de funcionamiento en el motor de explosión

cilindro, debe colocársele un volante que acumule energía como para poder realizar los tres tiempos restantes a expensas de

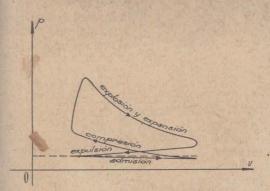


Fig. 537.—Ciclo en el motor de explosión de cuatro tiempos.

uno sólo. Existen algunos tipos de motores en que todo el ciclo se cumple en dos tiempos.

En la práctica se utilizan motores de por lo menos, dos cilindros.

Los motores de más cilindros llevan siempre un número par para que las acciones sobre el eje motriz (cigüeñal) estén más equilibradas.

En los motores de los aviones los cilindros están distribuídos generalmente según radios alrededor del eje (fig. 583).

En los automóviles están colocados paralelamente (en línea) o inclinados, una mitad de los cilindros a cada lado de un plano vertical de simetría (en V) (figs. 539 y 540).

§ 310. Motores Diesel.—Los motores Diesel funcionan en forma parecida al motor de explosión. Son de cuatro tiempos,

pero la combustión no es producida por una bujía, sino que la compresión es tan violenta que la elevación de temperatura alcanza a provocar la combustión de la mezcla de petróleo y aire,

Fig. 538.-Motor en estrella, de aviación.

corrido continúa la inyección de combustible, tiempo durante el cual prosigue la combustión. Se alcanza así una temperatura de unos 1600° C y continúa la expansión. Próximo el émbolo al final de su carrera, se abre la válvula C y comienza el período de expulsión en que los gases de la combustión son expelidos al exterior. Se ha cumplido así un ciclo completo.

En la parte inferior de la figura, cuatro diagramas en que las abcisas representan volúmenes y las ordenadas presiones, tienen marcada en rojo la parte del ciclo recorrida en cada uno de los cuatro tiemque es el combustible utilizado.

Analiza emos su funcionamiento con ayuda de la figura 541. Durante el primer período (admisión) al bajar el émbolo, penetra aire por la válvula A. que se cierra cuando aquél llega al final de su carrera. Sube el émbolo y comprime al aire aumentando la temperatura hasta alrededor de 600° C (compresión). Entonces se produce por el tubo central B la invección del combustible, que quema al ser invectado. Comienza la expansión y durante un pequeño intervalo de re-

Fig. 539.-Motor en linea.

En este diagrama, como en los de las otras máquinas térmicas, el área encerrada entre las curvas es proporcional al trabajo realizado.

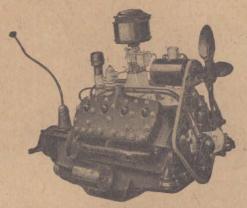


Fig. 540.-Motor en V.

El hecho de tener que alcanzar presiones muy elevadas hace necesaria mayor solidez del cilindro. Estos motores son mu-

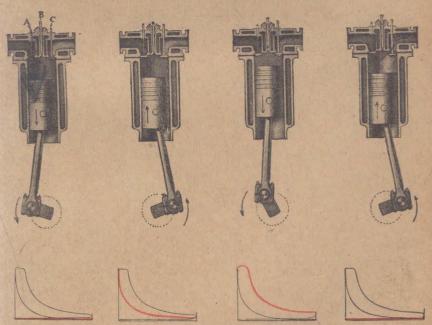


Fig. 541.—Ciclo en el motor Diesel de cuatro tiempos.

cho más pesados y requieren un volante de mayores dimensiones que los motores de explosión. Su puesta en marcha es más dificultosa, pues requiere una presión previa. No son cómodos para aquellas aplicaciones en que son necesarias frecuentes detenciones y puestas en marcha, pero su utilidad es enorme en las plantas industriales fijas.

APLICACIÓN DE LOS MOTORES TÉRMICOS

El dirigible cuyas hélices son accionadas por motores de explosión o de combustión interna, y el lujoso paquebote movido por hélices impulsadas por potentes turbinas a vapor, utilizan en distintos medios, motores térmicos perfeccionados.

El grabado reproduce una fotografia vinculada al vuelo del dirigible

alemán "Graf Zeppelin" a Buenos Aires, en 1934.

BIBLIOTECA NACIONAL DE MAESTROS

PROBLEMAS A RESOLVER

INDICACIONES GENERALES

La inclusión de la presente serie de problemas, clasificados por capítulos y acompañados por los resultados, responde a la necesidad de completar el estudio teórico con ejercicios en que se apliquen las leyes y principios en forma concreta. Es éste el único medio de comprobar si realmente se ha asimilado el conocimiento teórico.

No se dan aquí las soluciones para dejar al alumno el esfuerzo y la satisfacción de hallarlas, pero se dan los resultados, que servirán como control y guía.

En todos los problemas, las fórmulas a utilizar deberán buscarse en el respectivo capítulo, salvo pequeños detalles que, en algunos casos, corresponden a capítulos anteriores.

Es conveniente adquirir el hábito de resolver completamente el problema, en forma general, con letras, antes de sustituir los datos numéricos; con ello se evita la realización de cálculos superfluos. Al introducir los datos en el cálculo, deberá cuidarse de *indicar las unidades* correspondientes junto con los números, reduciéndolas todas al mismo sistema (técnico, o c. g. s.) cuando es necesario.

En todos los casos se deberá cumplir la condición de homogeneidad según la cual, después de realizar con las unidades las mismas operaciones que con los números, debe quedar expresado el resultado en la unidad que corresponde a la magnitud que se calcula.

Teniendo en cuenta estas indicaciones, será fácil hallar la solución de los problemas que siguen:

CAPITULO I

MAGNITUDES Y MEDICIONES

- 1.)—a) Encontrar el valor de 3,8 km en metros, centímetros, milimetros.
 - b) Expresar 166 cm en milímetros, metros y kilómetros.
- 2.—¿ Qué ángulo forman los radios terrestres que pasan por los extremos de un camino recto de 4,65 km?

Radio terrestre = 6370 km.

Respuesta: = 2'30".

3.—Se tiene una regla graduada en milímetros y se quiere aplicar un nonius que aprecie 0,05 mm. ¿Cuántas divisiones debe tener y que longitud abarcará?

Respuesta: N = 20; l = 19 mm.

4.—Sobre un círculo dividido de 15 en 15 minutos se quiere aplicar un nonius que aprecie 20" ¿Cuántas divisiones debe tener y qué longitud abarcará?

Respuesta: N = 45; $\alpha = 119$.

5.—Calcular el ángulo sólido bajo el cual se ve un disco de 50 cm de radio desde un punto situado a 3 m sobre la perpendicular en su centro.

Respuesta: $\Omega = 0.002618$ esterrad.

6.—Expresar en radianes y grados sexagesimales el ángulo que intercepta un arco de 26,2 cm en una circunferencia de radio 80 cm.

Respuesta: $\alpha = 0.3275 \text{ rad} = 18^{\circ}04'51''$.

CAPÍTULO II

ESTÁTICA

1.—Seis niños, divididos en dos bandos, tiran de los extremos de una soga. Hacia un lado tiran con fuerza de 15, 19 y 16 kgr y hacia el otro con fuerzas de 10, 18 y 20 kgr. ¿Qué sucederá?

¿Se podrá emplear una cuerda de 10 mm² de sección, que sólo resista

5 kg por mm² sin romperse?

Respuesta: a) El conjunto se desplaza hacia el lado de los primeros, pues hay un exceso a su favor, de 2 kgr.

 b) Se puede emplear pues si se aplican las fuerzas sin dar tirones, basta con que resista 48 kgr.

2.—Un lanchón colocado en el centro de un canal está sostenido por cables que forman un ángulo de 30° con el eje del canal. En cada cable hay un dinamómetro que indica 40 kgr. ¿Qué fuerza ejerce el agua sobre el lanchón? Si esta fuerza fuera 100 kgr; ¿cuánto indicarían los dinamómetros?

Respuesta: a) R = 69,2 kgr. b) F = 57,8 kgr.

 $3.-_7\mathrm{Dos}$ fuerzas concurrentes de 80 y 150 kgr forman entre sí un ángulo de 90°. Hallar la resultante.

Respuesta: R = 170 kgr.

4.—En dos postes distanciados 40 metros, están atados a la misma altura los extremos de un cable de 44 metros de longitud y peso despreciable. Calcular la tensión del cable si de su punto medio pende un cuerpo que pesa 2 200 kgr.

Respuesta: F = 2 642 kgr.

5.—Por medio de una barra de 2,80 m de longitud, llevan dos obreros una carga de 140 kgr, suspendida a 1,80 del de adelante. ¿Cuál es la carga que soporta cada obrero?

Respuesta: F₁ = 50 kgr; F₂ = 90 kgr.

6.—Hallar el módulo y posición de la resultante de dos fuerzas paralelas y de igual sentido de 1400 y 800 kgr, respectivamente, situadas a la distancia de 5,50 metros.

Respuesta: a) R = 2 200 kgr.

b) Entre las dos a 2 m de la de 1400 kgr.

7.—Dos personas llevan una carga de 120 kgr colgada de una barra horizontal de 2,7 m de largo, que sostienen por los extremos. La de adelante sostiene una parte igual a 40 kgr. ¿Qué esfuerzo hace la otra persona y dónde está colocada la carga?

Respuesta; a) F = 80 kgr.
b) a 1,80 m del extremo delantero.

8.—Calcular la resultante de tres fuerzas concurrentes de 60, 70 y 80 kgr, que actúan según las aristas de un triedro trirrectángulo.

Respuesta: 122 kgr.

9.—Demostrar que el centro de gravedad de un triángulo es el punto de intersección de las medianas.

Respuesta: Se demuestra que el c. de g. debe estar sobre una mediana dividiendo el triángulo en fajas angostas, paralelas al lado correspondiente, y se-repite para las otras medianas.

10.—De los vértices de un triángulo rectángulo de lados 3, 4 y 5 cm penden hilos con pesos cuyo valor en gramos es igual a la longitud del lado opuesto. a) Determinar el punto de donde se lo puede apoyar para que esté en equilibrio despreciando el peso del triángulo. b) Resolver gráficamente, suponiendo que el triángulo peso 20 gr.

Respuesta: a) Uniendo el vértice A que forman la hipotenusa y el cateto menor, con el punto del cateto mayor situado a 1,5 cm del menor, el centro de gravedad se encuentra sobre esa línea a 2,24 cm del punto A.

CAPITULO III

MÁQUINAS SIMPLES. EQUILIBRIO

1).—Una palanca sin peso está sometida a la acción de las siguientes fuerzas: a la derecha y a partir del apoyo: 120 gr a 20 cm; 80 gr a 24 cm, y 20 gr a 30 cm; a la izquierda 200 gr a 25 cm y 40 gr a 30 cm. ¿Qué fuerza hay que aplicar y a qué lado del apoyo, a 20 cm de distancia para restablecer el equilibrio? ¿Cuál es la reacción del apoyo?

Respuesta: a) Hay que aplicar 64 gr a 20 cm a la derecha del apoyo.
b) R = 524 gr.

2).—Una cuerda rodea 1/6 del perímetro de una polea móvil que soporta un peso Q=120 Kgr. ¿Qué esfuerzo hay que aplicar al extremo de la cuerda para mantener el equilibrio?

Respuesta: P = 120 Kgr.

3).—¿Cuál es la fuerza paralela al plano que equilibra a un cuerpo de 2500 Kgr colocado sobre un plano inclinado de longitud l=8 m y altura h=0.75 m? ¿Cuál es la reacción del plano?

4).—Una polea móvil soporta un peso de 80 Kgr. El extremo libre de la cuerda está arrollado al cilindro de un torno de 0,20 m de radio. ¿Qué esfuerzo debe aplicarse a la manivela del torno cuya longitud es 0,50 m para equilibrar el sistema?

Respuesta: p = 16 Kgr.

5).—Se tiene un aparejo diferencial cuyos radios son: $R=25~\rm cm$ y $r=20~\rm cm$. ¿Qué esfuerzo debe aplicarse, teóricamente, para equilibrar un peso de 2 000 Kgr?

Respuesta: P = 200 Kgr.

CAPÍTULO IV

CINEMÁTICA

1).—Un corredor recorre 100 m en 10,8 seg. Calcular su velocidad en Km/hora.

Respuesta: v = 33,34 Km/hora.

2).—Un tren recorre en 20 horas una distancia de 1003 millas. Calcular su velocidad media en Km/hora, milla/hora, m/seg, pie/seg,

Respuesta:
$$v = 80,71 \frac{Km}{hora} = 50,15 \frac{milla}{hora}$$

$$= 22,42 \frac{m}{seg} = 73,55 \frac{pie}{seg}$$

3).—Un tren se desliza sobre un plano inclinado partiendo de reposo. Al cabo de 1 seg su velocidad es 1 m/seg, después de 2 seg es 2 m/seg y al final de 3 seg es 3 m/seg. ¿Cuál es su aceleración? ¿Qué espacio ha recorrido en 3 seg? ¿Y en 10 seg?

4).—Un cuerpo se mueve con movimiento uniformemente acelerado siendo la aceleración 3 m/seg? ¿Cuál es la velocidad al final de 5 seg? ¿La velocidad inicial en el octavo segundo? ¿El espacio recorrido en 5 y 7 seg?

Respuesta: a)
$$v_5 = 15$$
 m/seg.
b) $v_7 = 21$ m/seg.
c) $e_5 = 37,5$ m.
d) $e_7 = 73.5$ m.

5).—Un móvil parte del origen de coordenadas y se mueve sobre el eje Ox con movimiento uniformemente retardado en el sentido de las x crecientes. Siendo $v_0 = 5$ m/seg y a = -0.2 m/seg°, calcular: a) cuánto

tarda en anularse su velocidad; b) a qué distancia del origen; c) cuánto tarda en volver a pasar por el origen; d) en qué instante y lugar su velocidad es 2 m/seg.

Respuesta: a) t = 25 seg. b) e = 62,5 m.

c) t = 50 seg.

d) t = 15 seg; e = 52.5 m.

6.—Se lanza un cuerpo hacia arriba con velocidad inicial de 45 m/seg. ¿Cuánto tarda en alcanzar su altura máxima? ¿Cuál es dicha altura? ¿Cuánto tarda en llegar nuevamente al suelo?

Respuesta: a) t = 4,59 seg.

b) h = 103,4 m.

c) t = 9,28 seg.

7).—Un botero rema con velocidad 2 m/seg en una dirección que forma un ángulo de 30° hacia el este con la línea sud-norte. El viento arrastra al bote con velocidad 3,2 m/seg en una dirección que forma el mismo ángulo con la dirección oeste-este. Calcular la velocidad resultante, sus componentes en las direcciones sud-norte y oeste-este y su dirección.

Respuesta: a) v = 5, m/seg.

b) En dirección oeste - este: vx = 3,77 m/seg; en dirección

sud-norte: v_y = 3,33 m/seg. c) Forma un ángulo de 41°30° con la dirección oeste - este.

 $(\operatorname{tg} \alpha = \frac{v_y}{v_x})$

8).—¿Con qué velocidad debe lanzarse hacia arriba un proyectil para que alcance, en el vacío, la altura de 20 metros?

Respuesta: v = 19,8 m/seg.

9).—¿Con qué velocidad llega al suelo un cuerpo que cae en el vacío desde 200 m de altura?

Respuesta: v = 62,65 m/seg.

10).—Un vehículo se mueve sobre un plano horizontal con velocidad constante 60 Km/hora. Llega a un plano inclinado de 200 m de longitud y lo recorre en 10 seg. ¿El movimiento se ha acelerado o retardado? Calcular la aceleración en el plano inclinado y la velocidad final.

Respuesta: a) Se acelera.

b) $a = 0.668 \text{ m/seg}^2$.

e) v = 23,34 m/seg.

11).—¿Cuánto tiempo tarda en llegar al suelo el agua de una nube que se encuentra a 300 m de altura suponiendo que la caída se cumpliera en el vacío?

Respuesta: 7,83 seg.

12).—Se deja caer una piedra a un pozo y al cabo de 3 seg se oye el choque con el agua. Calcular la profundidad del pozo suponiendo que el sonido se propaga en el aire con velocidad constante 340 m/seg.

Respuesta: h = 40,70 m.

CAPÍTULO V

DINÁMICA

1).—Expresar en unidades técnicas y c.g.s. la masa de un cuerpo cuyo peso normal es 10 ton.

Respuesta:
$$1019,72 \frac{\text{Kgr. seg}^2}{m} = 10^7 \text{ g.}$$

2).—Expresar el peso en Buenos Aires (g = 979,669) de un cuerpo cuyo peso normal es 5 Kgr.

Respuesta: P = 4,995 Kgr.

3).—Sobre un vehículo de 3 ton colocado sobre un plano horizontal, actúan 5 hombres aplicando una fuerza de 40 Kgr cada uno. Calcular la aceleración que recibe y el espacio que recorre en 8 seg.

Respuesta: a) a =
$$0.653$$
 m/seg².
b) e = 20.90 m.

4).—Un cuerpo de 10 Kgr se desliza sobre un plano inclinado de 3 m de longitud y altura 0.6 m. Suponiendo nulo el frotamiento, calcular su aceleración y el tiempo que tarda en recorrer el plano.

5).—Una fuerza actúa sobre un cuerpo que pesa 5 Kgr, inicialmente, en reposo y le hace recorrer 80 m en 20 segundos. Calcular la fuerza en dinas y Kgr.

Respuesta:
$$f = 0.22 \text{ Kgr} = 2.16 \times 10^5 \text{ dina}$$

6).—Un cuerpo plástico de 4,5 Kgr de peso choca contra una pared con velocidad 6 m/seg. Calcular la fuerza que ejerce si el choque dura 0,1 seg.

Respuesta: f = 27,6 Kgr.

7).—Se lanza un proyectil con velocidad 400 m/seg e inclinación 30° con respecto al plano horizontal. Calcular el alcance y la altura máxima a que llega.

Respuesta: a)
$$X = 14,12$$
 Km, b) $h = 2038$ m.

8) Sobre un cuerpo actúa durante 18 segundos una fuerza de 10 Kgr y le hace recorrer 450 m. ¿Cuál es el peso del cuerpo?

9).—Un tren que marcha a 60 Km/hora se detiene en medio minuto. Admitiendo fuerza de frenaje constante, calcular su valor sabiendo que el tren pesa 80 ton.

Respuesta: F = 4540 Kgr.

10).—Dos esferas perfectamente elásticas experimentan un choque central. Si las masas están en la relación $m_1 : m_2 = 1 : 2$ y las velocidades iniciales son iguales y opuestas, calcular las velocidades finales.

Respuesta:
$$v_1 r = -\frac{5}{3} v_i$$
; $v_2 f = \frac{1}{3} v$
considerando $v_1 r = +v$; $v_2 r = -v$

11).—Por la garganta de una polea pasa un hilo sin peso, de cuyos extremos penden pesas de 60 y 55 g, respectivamente. Al principio están en reposo y se las suelta. ¿Qué movimiento se produce si se supone nula la masa de la polea?

Respuesta: Se mueve el sistema descendiendo la pesa de 60 g. con acelera-

ción a =
$$44.3 \frac{\text{cm}}{\text{seg}^2}$$
.

12).—En las condiciones del problema anterior, qué masas deben colocarse en los extremos del hilo para que con la misma diferencia de 5 g se produzca un movimiento de aceleración 8 cm/seg².

Respuesta: Deben colocarse masas de 309,1 y 304,1 g.

CAPÍTULO VI

TRABAJO Y ENERGÍA MECÁNICA

1).—Calcular en Kgm, erg y joule, el trabajo necesario para elevar a 30 m de altura un peso de 170 Kgr.

2).—Calcular la energía cinética de un cuerpo de 5 Kgr que cae en el vacío desde 80 m de altura.

Respuesta: L =400 Kgm = 3920 joule.

3).—Se lanza hacia arriba un proyectil de 150 g con velocidad inicial de 300 m/seg. Calcular su energía cinética inicial y la misma a 50 m de altura.

Respuesta: E = 688 Kgm = 6750 joule =
$$6.75 \times 10^{10}$$
 erg. E₁ = 680,5 Kgm.

4).—Un cuerpo de 28 Kgr. cae libremente por un plano inclinado de inclinación 30°, partiendo del reposo. Calcular su energía cinética cuando ha recorrido 16 m sobre el plano.

Respuesta: E = 224 Kgm.

5).—¿Qué aumento de energia potencial experimenta un avión de 2500 Kgr que asciende hasta 1000 metros?

Respuesta: E = 2 500 000 Kgr.

6).—Calcular la energía cinética con que llega al suelo un cuerpo de 80 gr que cae en el vacío desde 10 m de altura.

Respuesta: E = 0,800 Kgm.

7).—Un móvil de 3200 Kgr sube por un plano inclinado que asciende 5 m cada 100 m medidos sobre el plano. Calcular la fuerza motriz sabiendo que la velocidad: a) se mantiene constante; b) en 200 m pasa de 40 a 60 Km/hora; c) en el mismo camino disminuye de 40 a 20 Km/hora.

8).—El pilón de un martinete para hincar pilotes, pesa 600 Kgr y se lo deja caer desde 0,8 m de altura. Calcular la resistencia que se opone al pilote si después de 10 golpes penetra 5 cm.

Respuesta: F = 96 900 Kgr.

9).—Calcular la potencia necesaria para elevar un montacargas de peso total 3000 Kgr a 6 m de altura en 30 segundos. ¿Qué motor debe aplicarse si el rendimiento total es 0,7? Expresar la potencia en C. V. y Kgm/seg.

Respuesta: a) W = 600 Kgm/seg = 5884 watt = 8 C.V. b) W = 11,4 C.V.

10).-Por un plano inclinado de base 80 m y altura 10 m desciende un cuerpo de 600 Kgr sin que se modifique su velocidad. Calcular la variación de energía mecánica.

Respuesta: E = 6000 Kgm.

CAPÍTULO VII

PÉNDULO - MOV. CIRCULAR - MOV. ARMÓNICO - PLANETAS

1).—Los números de oscilaciones de dos péndulos están entre sí como 26 : 32. Calcular la relación de sus longitudes.

Respuesta: l₁: l₂ = 256: 169.

2).—¿Cuánto atrasa o adelanta por día en el ecuador ($g_o=9,781$) un reloj de péndulo que en Buenos Aires (g=9,79669) marcha correctamente?

Respuesta: En un día marca 70 segundos menos, luego atrasa 1 min 10 seg.

3).-El péndulo de un reloj da en Buenos Aires 90 oscilaciones simples por minuto. Calcular su longitud reducida.

Respuesta: 1 = 44,12 cm.

4.—Una piedra de 1 Kgr, atada a un hilo, describe en un plano horizontal una circunferencia de radio 2,5 m, dando 60 vueltas por minuto. Calcular la fuerza que ejerce la cuerda.

Respuesta: F = 10,07 Kgr.

5).—Se hace girar un balde con agua en un plano vertical describiendo una circunferencia de radio 60 cm. Calcular las velocidades, angular y tangencial mínimas para que el agua no se derrame.

Respuesta:
$$\omega = 4,087 \frac{1}{\text{seg}} = 39,03 \text{ rev. p.}$$

min.; $v = 2,45 \text{ m/seg.}$

6).—Un ciclista describe, a 20 Km/hora, una curva de 30 m de radio. ¿Cuánto debe inclinarse para no caer?

Respuesta: tg $\alpha = \frac{v^2}{R_{cg}}$; $\alpha \approx 6^{\circ}$

7).—¿Qué velocidad tangencial debe imprimirse a un péndulo de 80 cm de longitud para que describa un cono vertical de ángulo en el vértice igual a 30°?

Respuesta:
$$v = \sqrt{g}$$
. l . $tg 30^{\circ}$. $sen 30^{\circ}$
= 1,50 m/seg.

8).—El radio de Júpiter es $R=71\,000$ Km y el más alejado de sus satélites se encuentra a 27 R Km del centro, recorriendo su órbita en t=16,69 días de 86.400 segundos. Calcular la aceleración g' en la superficie de Júpiter.

Respuesta: g'= 26,53 m/seg2.

9).—¿A qué distancia del centro de la tierra se equilibra, en el plano ecuatorial, la atracción terrestre con la fuerza centrífuga?

Respuesta: d =
$$\sqrt[3]{\frac{g R^2 \cdot T^2}{g R^2 \cdot T^2}}$$
 = 42.217 Km. (tomande R = 6370 Km; T = 86400 seg).

10).—Un volante de 1,50 m de radio, gira a 150 rev. p. min. Estudiar el movimiento de la proyección sobre un diámetro, de un punto de su periferia.

Respuesta:
$$\omega = 5 \pi$$

 $e = 1.5$ sen $5\pi t$
 $v = 7.5 \pi \cos 5\pi t$
 $a = -37.5 \pi^2 \sin 5\pi t$

CAPÍTULO VIII

ROTACIÓN DEL CUERPO RÍGIDO

1).—Se tiene un cilindro de cobre ($\delta=8.9$) de radio R=2 cm y longitud l=6 cm. Calcular su momento de inercia con respecto al eje baricéntrico longitudinal y con respecto a un eje paralelo que pasa a 10 cm del anterior.

Respuesta: $Ig = 1342 \text{ g.cm}^2$; $I = 68447 \text{g.cm}^2$.

2.)—Calcular la energía cinética de rotación de un volante cilíndrico macizo de acero ($\delta=7.5$) de radio R=40 cm y longitud l=15 cm, cuando gira a 220 rev. p. min.

Respuesta: E = 12.007 joule = 1.224 Kgm.

3).—Calcular el tiempo de oscilación de un péndulo formado por un disco de radio $R=20~\rm cm$ y masa $m=300~\rm g$ a cuyo borde se ha atado un hilo de 60 cm para suspenderlo.

Respuesta: T = 1,82 seg

4).—Calcular las aceleraciones de caída por un plano inclinado de ángulo α de una esfera y un cilindro maeizos suponiendo que caen rodando.

Respuesta:
$$a = \frac{g. \text{ sen } \bar{u}}{1 + \frac{I}{MR^c}}$$

esfera:
$$a = \frac{5}{7} g \operatorname{sen} a$$
:

cilindro:
$$a = \frac{2}{3} g \operatorname{sen} a$$
.

CAPÍTULO IX

HIDROSTÁTICA

1).—Una masa de hormigón de 10 toneladas se apoya sobre una superficie de 1 m de ancho por 2,50 m de largo. Calcular la presión suponiendo distribución uniforme.

Respuesta: $p = 4000 \frac{\text{Kgr}}{\text{m}^2} = 0.4 \frac{\text{Kgr}}{\text{cm}^2}$.

2).—Un tanque de 6 m de largo, 2 m de ancho y 3 m de profundidad, se llena con agua, Calcular la presión en el fondo y en un punto situado a 1,5 m debajo de la superficie.

Respuesta: En el fondo p =
$$300 \frac{gr}{cm^2}$$
; a 1,5

m de profundidad: p' = 150
$$\frac{gr}{cm^2}$$
.

3).—En un recipiente cilíndrico de radio $R=5\,$ cm se coloca mercurio hasta una altura $h=16\,$ cm sobre el fondo. Calcular: a) el peso del mercurio; b) la presión en el fondo; c) la fuerza ejercida sobre éste; d) la presión en un punto interior situado a 4 cm sobre el fondo ($\delta = 13.6$

$$\frac{g}{cm^3}$$
).

Respuesta: a) P = 17.090 gr. b) p = 217.6
$$\frac{gr}{cm^2}$$
.

d)
$$p' = 163.2 \frac{gr}{cm^2}$$
.

4).—Un recipiente en forma de tronco de cono recto circular de bases paralelas, con su base mayor hacia abajo, está lleno de mercurio. Calcular: a) la presión en el fondo; b) la fuerza total o empuje sobre el mismo; c) el peso del mercurio contenido en el vaso.

Dimensiones del recipiente: R = 12 cm; r = 8 cm; h = 6 cm.

5).—Un recipiente cilíndrico circular de radio r y altura h se llena de líquido. Calcular la relación h/r para que la fuerza total sobre el fondo sea el triple de la que actúa sobre la superficie lateral.

Respuesta:
$$\frac{h}{r} = \frac{1}{3}$$
.

6).—Un cuerpo pierde aparentemente 25 gr de peso sumergido en agua, 23 gr en aceite y 20 gr en alcohol. Calcular: a) la densidad relativa del aceite y b) la del alcohol; c) el peso específico del cuerpo, sabiendo que su peso en el vacío es de 90 gr.

Respuesta: a) D = 0.92.
b) D' = 0.80.
c)
$$\rho = 3.6 \frac{\text{gr}}{\text{cm}^3}$$
.

7).—Una esfera de platino pesa 660 gr en el aire, 630 gr en el agua y 606 gr en ácido sulfúrico. Calcular los pesos específicos del platino y del ácido sulfúrico.

Respuesta: a)
$$\rho=22\frac{\rm gr}{\rm cm^3}$$
 b) $\rho=1.8\frac{\rm gr}{\rm cm^3}$

8) Un cilindro de hierro de radio 4 cm y altura 10 cm pesa en el aire 3765 gr. Calcular su peso en aceite de densidad relativa D = 0.80.

Respuesta: P = 3363 gr.

9).—Suponiendo que la corona de Hieron pesaba 1070 gr en el aire y 1010 gr en el agua, calcular cuántos centímetros cúbicos de oro y cuántos de plata había en ella (los respectivos pesos específicos son: 19,3 gr/cm3 y 10,5 gr/cm3).

Respuseta: oro: 50 cm3; plata: 10 cm3.

10).-; Cuántos metros cúbicos desplaza de menos un navío de peso 20.000 ton al pasar de un río al mar en que la densidad del agua es 1,026 (se supone en el río $\delta = 1$ g/cm³).

Respuesta: 507 m3.

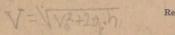
CAPITULO X

HIDRODINÁMICA

1).—Se practica un orificio pequeño en la pared lateral de un recipiente lleno de líquido hasta un nivel 80 cm más alto que el orificio. Calcular la velocidad teórica de salida.

Respuesta: v = 3,96 m/seg.

2).—En la pared lateral de un recipiente lleno de líquido hasta 90 cm de altura, se abren dos orificios a 15 y 60 cm sobre el fondo. Calcular el alcance de ambos chorros en el instante inicial.


Respuesta: $X_1 = 67$ cm $X_2 = 84.8$ cm.

3).—El tubo de descarga en un dique, situado a 30 m debajo del nivel máximo de las aguas, tiene 50 cm de diámetro. Calcular: a) la velocidad de salida; b) el caudal, siendo el coeficiente de contracción k = 0,64; c) la potencia del chorro.

Respuesta: a) v = 24,26
$$\frac{m}{\text{seg}}$$
.
b) Q = 3,049 $\frac{m^3}{\text{seg}}$.
c) W = 91,462 $\frac{\text{ton m}}{\text{seg}}$ = 1219 CV.

4).—La presión hidrostática del agua en una cañería es de 650 mm de mercurio cuando no hay circulación. Calcular cuánto disminuye si el agua circula con velocidad 3 m/seg, suponiendo líquido ideal.

5).—En el fondo de un tanque situado a 15 m de altura, se practica un orificio. Con qué velocidad llega al suelo el agua que sale por él, si hay 75 cm de agua en el tanque y se supone que cae en el vacío.

Respuesta: $v = 17,57 - \frac{m}{seg}$

CAPÍTULO XI

PRESIÓN ATMOSFÉRICA

1) Calcular en dina/cm² la presión atmosférica normal.

Respuesta: p = 1 013 280
$$\frac{\text{dina}}{\text{cm}^2}$$

2).—La superficie del cuerpo humano es, aproximadamente, 1,40 m². Calcular la fuerza total que sobre él ejerce la atmósfera cuando la presión barométrica tiene su valor normal.

Respuesta: F = 14 462 Kgr.

3).—Calcular el desnivel entre dos puntos de la atmósfera en los que, en un instante dado, hay una diferencia de presión de 5 mm de mercurio.

Respuesta:
$$h_2 - h_1 = 52,60 \text{ m}$$
.

4).—En dos puntos A y B se miden simultáneamente las presiones barométricas p₂ = 610 mm y p₁ = 760 mm de mercurio; siendo la temperatura media t = 20° C. Calcular el desnivel aplicando la fórm. [5] § 146.

Respuesta: h = 189,20 m.

5).—Calcular la fuerza ascencional de un aerostato cuyo peso total, incluyendo el gas, es: P=650 Kgr, siendo su volumen de partida V=600 m³ (peso específico del aire $\rho=1,3$ Kgr/m³).

2- A 1 1

Respuesta: F = 130 Kgr.

CAPITULO XII

COMPRESIBILIDAD DE GASES

1).—La rama más corta de un tubo de Mariotte tiene 20 cm de largo y está llena de aire a la presión de 760 mm de mercurio. Calcular el desnivel de mercurio necesario para reducir el volumen a 2/5 de su valor inicial y la altura de la columna en la rama abierta, sobre el cero de la escala.

Respuesta: a) 1140 mm ; b) 1260 mm.

2).—Un tubo cilíndrico cerrado en uno de sus extremos, de longitud 80 cm, está lleno de aire. Sumergido verticalmente en mercurio hasta que el extremo cerrado quede a 10 cm sobre el nivel exterior, se pregunta: que longitud de tubo ocupa el aire encerrado, si la presión exterior es de 74 cm de mercurio.

Respuesta: 51,3 cm.

3).—Un manómetro de aire comprimido, con tubo cilíndrico, contiene aire que ocupa una longitud $l=40\,$ cm cuando la presión es 760 mm. ¿Cuánto se elevará el mercurio si la presión se hace igual a 10 atmósferas?

Respuesta: e = 36 cm.

4).—El cuerpo de bomba de una máquina neumática tiene un volumen de 800 cm³ y la campana 4000 cm³. Calcular la presión después de 20 golpes de émbolo, suponiendo la presión inicial de 76 cm de mercurio.

Respuesta: p20 = 1,98 mm de Hg.

5).—Los volúmenes del cilindro y la campana de una máquina neumática están en la relación 1:5. ¿Cuántos golpes de émbolo se necesitan para reducir la presión a 1/20 del valor primitivo?

Respuesta: n = 16,4.

CAPÍTULO XIV

ELASTICIDAD

1).—Un alambre de acero de 0,4 mm² de sección y 4 m de longitud, es cargado con un peso de 2 Kgr. Calcular el alargamiento que experimenta.

Respuesta: $\Delta l = 0,9091$ mm.

2).—¿Qué peso es necesario para producir un alargamiento de 2 mm a un alambre de cobre de 6 m de longitud y 0,8 mm² de sección?

Respuesta: P = 2,67 Kgr.

CAPÍTULOS XV y XVI

ACÚSTICA

1).—¿Qué longitud de onda corresponde a una vibración de período T=0.1 seg que se propaga en un medio elástico con velocidad v=600 m/seg?

Respuesta: $\lambda = 60$ m.

2).—¿Cuál es la longitud de onda del la, (n = 435 vs) en el aire (v = 340 m/s) y en el agua (v = 1435 m/seg)?

b) $\lambda_1 = 0.7817 \text{ m}$. Respuesta: a) $\lambda_2 = 3.2989 \text{ m}$.

3).—Las longitudes de tres tubos abiertos están en la relación 15 : 12 : 10. ¿Qué relación habrá entre las frecuencias de sus notas fundamentales?

Respuesta: 0,067 : 0,0834 : 0,1.

4).—Idem si los tubos son cerrados.

Respuesta: 0,067 : 0,0834 : 0,1.

5).—Una cuerda de longitud igual a 54 cm da la nota do₃. Calcular cuánto se la debe acortar para que, con igual tensión, dé el mi₃.

Respuesta:
$$l' = l - \frac{1}{5} l = 43,2$$
 cm.

6).—Calcular la relación entre las frecuencias emitidas por dos cuerdas de igual longitud y de la misma sustancia, que están tensas por pesos P=3 Kgr y P'=0.8 Kgr, si sus diámetros son, respectivamente, 3 y 5 mm.

Respuesta: 3,21.

7).—En un tubo de Kundt, con aire en su interior, se ha medido la longitud de onda $\lambda=26$ cm. Calcular la velocidad de propagación en la varilla, si la longitud es 1,20 m y está fija en su punto medio.

8).—A un navío llegan con tres segundos de diferencia las ondas sonoras propagadas en el agua y en el aire, provenientes del sonido de un disparo producido en otro navío alejado. Calcular la distancia que los separa.

Respuesta: d = 1336,7 m.

CAPÍTULOS XVII y XVIII

TERMOMETRÍA Y DILATACIÓN

1).—Calcular en grados Réaumur y Fahrenheit las temperaturas correspondientes a: — 20, 20, 50 y 80° C.

Respuesta:
$$-20^{\circ} \text{ C} = -16^{\circ} \text{ R} = -4^{\circ} \text{ F};$$

 $+20^{\circ} \text{ C} = +16^{\circ} \text{ R} = +68^{\circ} \text{ F};$
 $+50^{\circ} \text{ C} = +40^{\circ} \text{ R} = +122^{\circ} \text{ F};$
 $+80^{\circ} \text{ C} = +64^{\circ} \text{ R} = +176^{\circ} \text{ F}$

2).—Calcular el alargamiento que experimenta al pasar de 10 a 50 grados una varilla de hierro de longitud $l_{\nu}=25$ m; ($\chi=0.0000117$).

Respuesta: $\triangle l = 1.17$ cm

3).—¿Qué relación deben tener las longitudes de dos varillas de cobre y hierro, para que las diferencias de sus longitudes sean de 5 cm a cualquier temperatura?

Respuesta:
$$\frac{I_h}{I_e} = \frac{\lambda_c}{\lambda_h} = \frac{0.000017}{0.000011} = 1.5455.$$

4).—Un frasco de vidrio ($\lambda=0.00000861$) está lleno de mercurio a 0° C. Se lo calienta hasta 100° y se derraman 1,5 cm³ a esa temperatura. ¿Cuál es el volumen del frasco a 0°?

Respuesta: $V_0 = 96 \text{ cm}^3$

5).—¿Cuánto atrasa por día un reloj de péndulo de cobre, no compensado, que marcha exactamente a 0°, si se lo mantiene a 20° C?

Respuesta: 14,7 seg.

CAPÍTULO XIX

DILATACIÓN DE GASES

1).—Una masa de gas tiene un volumen $V_o=4000~{\rm cm^3}$ a la temperatura de 0° centígrado y presión $p_o=760~{\rm mm}$ de mercurio. Calcular: a) El volumen que ocupará a la temperatura $t=120^{\circ}$. b) El volumen ocupado a temperatura $t=100^{\circ}$ y presión $p=450~{\rm mm}$ de mercurio.

Respuesta: a)
$$v = 5758 \text{ cm}^3$$
.
b) $v = 9221 \text{ cm}^3$.

2).—En una probeta se han recogido 80 cm³ de oxígeno a la temperatura t = 20° centígrado y presión p = 700 mm de mercurio. Se pide: a) el volumen reducido a condiciones normales (0° y 760 mm); b) La masa del oxígeno recogido.

Respuesta: b) $v = 68.7 \text{ cm}^3$ a) m = 0.09817 g

3).—Una masa de 10 g de helio ocupa un volumen V=50 litros a la presión p=740 mm de Hg. Tomando como peso molecular del helio M=4 y sabiendo que R=0.082 litro-atm., calcular la temperatura a que se encuentra.

Respuesta: $t = 237,5^{\circ} K = -35,5^{\circ} C$.

4).—Un cuerpo de bomba contiene aire a 0° cuya presión es de 120 mm de Hg; en esas condiciones el pistón, que tiene un diámetro D=25 cm, se mantiene en equilibrio por efecto de su peso. ¿Cuánto pesa el pistón? ¿Cuánto hay que aumentar ese peso para que el equilibrio se mantenga calentado el aire en 10° ?

5).—Un globo contiene 2 litros de aire a 10° C y 750 mm de presión; si la presión baja 10 mm. ¿Cuánto debe disminuir la temperatura para que el volumen quede invariable?

Respuesta: t = 3.8° C.

CAPÍTULO XX

CALORIMETRÍA

1).—En un calorímetro de hielo se coloca un trozo de hierro de 80 g y cuya temperatura inicial es 100°: ¿Cuánto hielo se funde?

Respuesta: m = 11,5 g.

2).—En un calorímetro de mezclas cuyo recipiente y agitador de latón pesan 240 gr, se colocan 400 g de agua, siendo la temperatura inicial $t_i=15^\circ$,2. Calcular la temperatura final si se vierten 120 g de granallas de cinc a 100° C.

Respuesta: t_f = 17°,4.

3).—En el calorímetro del problema anterior y a la misma temperatura inicial, se vierten 500 g de mercurio a 70° C. Calcular la temperatura final.

Respuesta: t, = 170,25.

4).—En un calorímetro de Bunsen se echan 4 g de agua a 20°. ¿Cuánto se corre el índice si el capilar tiene 1 mm de diámetro?

Respuesta: l = 11,54 cm.

5).—En un calorímetro para gases, cuyo equivalente total en agua es M=500 g, la temperatura pasa del valor $t_i=15^\circ$,3 a $t_f=22^\circ$,5. ¿Qué volumen de aire a 100° ha circulado si su temperatura inicial es 100° C y la presión constante p=760 mm?

Respuesta: $V = 0.1446 \text{ m}^3$

CAPITULO XXI

EQUIVALENTE MECÁNICO DEL CALOR

1).—¿De qué altura debe caer un cuerpo de plomo para que se funda, suponiendo que la energía total del choque queda en el mismo y su temperatura inicial es $t_i=20^\circ$?

Respuesta: h = 6,40 Km

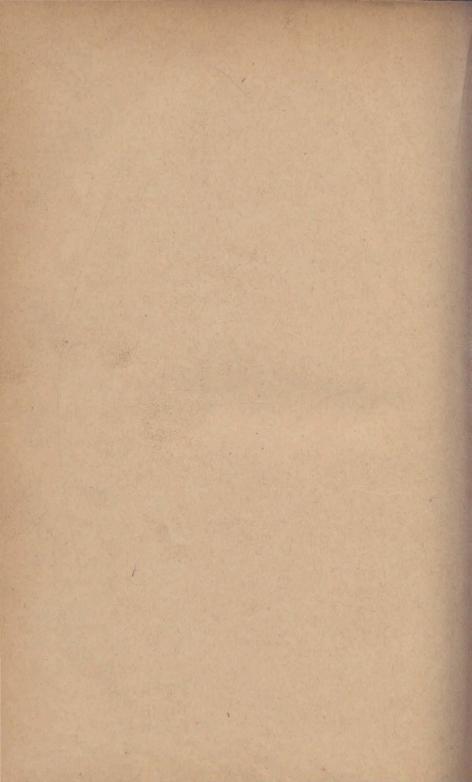
2).—¿Cuánto calor se produce al perforar una chapa de bronce si son necesarias 120 vueltas del barreno al cual se aplica una fuerza de 200 gr a 10 cm del eje de rotación?

Respuesta: Q = 35,5 cal

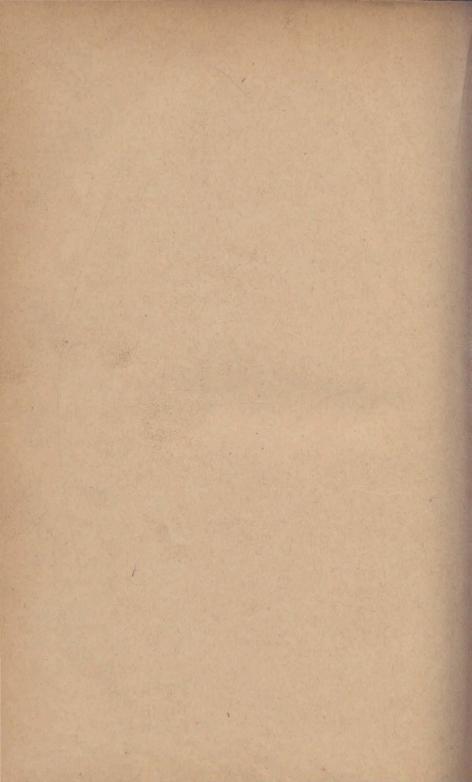
3.—¿Qué trabajo se gasta para vencer la presión atmosférica al congelar 50 Kg de agua si la densidad del hielo es 0,917 y la del agua 1 y a qué cantidad de calor equivale?

Respuesta: a) L = 46,7 Kgm b) Q = 109,3 cal

CAPÍTULO XXIII


CAMBIOS DE ESTADO

1).—Se colocan 2 Kgr de hielo en 4 Kgr de agua a 20°. ¿Se funde todo el hielo? ¿Cuál es la temperatura final suponiendo al sistema térmicamente aislado? $(f=80~{\rm cal})$. Respuesta: a) Se funde sólo 1 Kgr de hielo; b) $\mathbf{t_f} = 0^{\circ}$ C.


2).—A un recipiente con 5000 g de agua llega vapor a 100°, que se condensa. Si la temperatura inicial es $12^{\circ}8$ y la final 65° , calcular cuánto vapor se ha inyectado. Respuesta: m = 454,7 g.

3.—Se vierten 300 g de plomo fundido en 450 g de agua a 15°. Calcular la temperatura final. Respuesta: t = 24°,92.

INDICES

BIBLIOT A MACIONAL PENALITROS

INDICE

		PÁG.
	Prólogo	7
	Funciones trigonométricas Alfabeto griego	9
	INTRODUCCIÓN	
1 2 3 4 5	Cuerpo - Espacio - Tiempo	11 11 12 12 12 14
	MAGNITUDES Y MEDICIONES	
6 7 8 9 10 10 11 11 12	Nonius o vernier a) Vernier circular Tornillos micrométricos - Palmer	17 19 20 20 22 24 25 28 29
	CAPÍTULO II.	
13 13 14 15 16 17 18 19 20 21 22 23	Fuerzas, gravedad, peso a) Principio de acción y reacción Unidades de peso Peso específico Medida de fuerzas - Dinamómetros Representación gráfica de las fuerzas Sistemas de fuerzas - Equilibrio Composición de fuerzas concurrentes - Regla del paralelogramo. Descomposición de fuerzas concurrentes Composición y descomposición de fuerzas paralelas Composición de fuerzas aplicadas al cuerpo rígido Centro de gravedad	31 32 32 33 34 35 36 36 41 42 47 48

CAPÍTULO III.

		MOMENTO DE FUERZAS - EQUILIBRIO	Pág.
24 25 26 27 27 28 28 29 30 31 32 33 34	a)	Momento de una fuerza Teorema de los momentos (Teorema de Varignon) Equilibrio de la palanca Balanza Otros tipos de balanzas Poleas fija y móvil Combinaciones de poleas Equilibrio del torno Equilibrio en el plano inclinado Cuplas - Momento Equilibrio de un sistema cualquiera de fuerzas Equilibrio de cuerpos suspendidos y apoyados Determinación experimental del baricentro	51 - 52 - 53 - 58 - 63 - 66 - 68 - 70 - 71 - 73 - 75 - 77 - 81
		CAPÍTULO IV.	
		CINEMÁTICA	
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	a)	Cuerpo rígido Movimiento - Trayectoria Translación Rotación Movimientos compuestos Trayectoria y sistema de referencia Medida del tiempo - unidades Movimiento de un punto Movimiento uniforme - Velocidad - Leyes Movimiento variado - velocidad media Velocidad instantánea y vectorial Movimiento rectilíneo uniformemente acelerado Representación gráfica de la velocidad Espacio en el movimiento uniformemente acelerado Leyes del movimiento uniformemente acelerado Representación gráfica del espacio Movimiento rectilíneo variado en general Movimiento curvilíneo uniformemente variado Caída de cuerpos en el vacío Composición de movimientos Composición de aceleraciones	83 85 86 86 87 87 89 90 95 96 98 99 100 103 104 105 106 111 114
		CAPÍTULO V.	
		DINÁMICA	
55 56 56 57 58 59 60 61 62 63	a)	Objeto de la dinámica Principios de la dinámica Independencia de acción de las fuerzas Cálculo de masas Unidades de masa Comprobación del principio de masa - Máquina de Atwood Unidades - Sistemas c. g. s. y técnico Relaciones entre unidades Impulso y cantidad de movimiento Choque de cuerpos	117 117 120 120 121 123 126 128 129 130

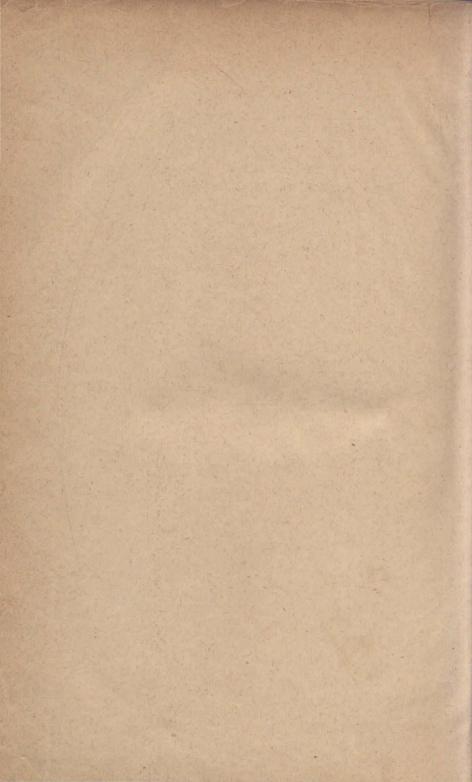
		Pág.
64	Densidad y peso específico	133
65		135
	CAPÍTULO VI.	
		18 34
	TRABAJO MECÁNICO - ENERGÍA - APLICACIONES	
66	Trabajo mecánico	139
67	Definición general de trabajo	141
68	Aplicación del concepto de trabajo a las máquinas simples	141
69	Energía - definiciones	144
70 71	Cálculo de la energía potencial	145 146
72		147
73		149
74		151
75 76		151 152
77		153
78	Frotamiento por deslizamiento	154
	a) Cono de rozamiento	154
79 80		155 156
81		156
82		
	CAPÍTULO VII.	
	PÉNDULO - MOVIMIENTO CIRCULAR UNIFORME	1
	PÉNDULO - MOVIMIENTO CIRCULAR UNIFORME MOVIMIENTO OSCILATORIO ARMÓNICO	1
83	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS	159
83 84	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes	159 162
84 85	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes	162 163
84 85 86	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes	162 163 163
84 85 86 87	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme	162 163 163 164
84 85 86	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga	162 163 163
84 85 86 87 88 89 90	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico	162 163 163 164 167 169 170
84 85 86 87 88 89 90 91	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico Fórmula del péndulo ideal	162 163 163 164 167 169 170 173
84 85 86 87 88 89 90 91 92	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico Fórmula del péndulo ideal Movimiento de los planetas.—Leyes de Kepler	162 163 164 167 169 170 173 173
84 85 86 87 88 89 90 91	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico Fórmula del péndulo ideal Movimiento de los planetas.—Leyes de Kepler Ley de gravitación universal	162 163 163 164 167 169 170 173
84 85 86 87 88 89 90 91 92 93 94	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico Fórmula del péndulo ideal Movimiento de los planetas.—Leyes de Kepler Ley de gravitación universal Determinación de la constante de gravitación. Masa de la tierra	162 163 164 167 169 170 173 173 176
84 85 86 87 88 89 90 91 92 93 94	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico Fórmula del péndulo ideal Movimiento de los planetas.—Leyes de Kepler Ley de gravitación universal Determinación de la constante de gravitación. Masa de la	162 163 164 167 169 170 173 173 176
84 85 86 87 88 89 90 91 92 93 94	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico Fórmula del péndulo ideal Movimiento de los planetas.—Leyes de Kepler Ley de gravitación universal Determinación de la constante de gravitación. Masa de la tierra a) Variación de g con la latitud y la altura	162 163 164 167 169 170 173 173 176
84 85 86 87 88 89 90 91 92 93 94	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico Fórmula del péndulo ideal Movimiento de los planetas.—Leyes de Kepler Ley de gravitación universal Determinación de la constante de gravitación. Masa de la tierra a) Variación de g con la latitud y la altura CAPÍTULO VIII.	162 163 164 167 169 170 173 173 176
84 85 86 87 88 89 90 91 92 93 94	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico Fórmula del péndulo ideal Movimiento de los planetas.—Leyes de Kepler Ley de gravitación universal Determinación de la constante de gravitación. Masa de la tierra a) Variación de g con la latitud y la altura	162 163 164 167 169 170 173 173 176
84 85 86 87 88 89 90 91 92 93 94	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico Fórmula, del péndulo ideal Movimiento de los planetas.—Leyes de Kepler Ley de gravitación universal Determinación de la constante de gravitación. Masa de la tierra a) Variación de g con la latitud y la altura CAPÍTULO VIII, ROTACIÓN DE UN CUERPO RÍGIDO	162 163 164 167 169 170 173 173 176
84 85 86 87 88 89 90 91 92 93 94 94	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico Fórmula del péndulo ideal Movimiento de los planetas.—Leyes de Kepler Ley de gravitación universal Determinación de la constante de gravitación. Masa de la tierra a) Variación de g con la latitud y la altura CAPÍTULO VIII. ROTACIÓN DE UN CUERPO RÍGIDO Rotación uniforme alrededor de un eje Energía cinética de un cuerpo en rotación	162 163 163 164 167 170 173 173 176 176 178
84 85 86 87 88 89 90 91 92 93 94 94	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico Fórmula del péndulo ideal Movimiento de los planetas.—Leyes de Kepler Ley de gravitación universal Determinación de la constante de gravitación. Masa de la tierra a) Variación de g con la latitud y la altura CAPÍTULO VIII, ROTACIÓN DE UN CUERPO RÍGIDO Rotación uniforme alrededor de un eje Energía cinética de un cuerpo en rotación Movimiento de rotación uniformemente acelerado	162 163 163 164 169 170 173 173 176 176 178
84 85 86 87 88 89 90 91 92 93 94 94	MOVIMIENTO OSCILATORIO ARMÓNICO MOVIMIENTO DE LOS PLANETAS Péndulo ideal - Juego de la energía - Leyes Comprobación de las leyes del péndulo Péndulo físico Determinación de la aceleración de la gravedad Movimiento circular uniforme Fuerza centrípeta y centrífuga Dirección de la vertical Movimiento oscilatorio armónico Fórmula del péndulo ideal Movimiento de los planetas.—Leyes de Kepler Ley de gravitación universal Determinación de la constante de gravitación. Masa de la tierra a) Variación de g con la latitud y la altura CAPÍTULO VIII. ROTACIÓN DE UN CUERPO RÍGIDO Rotación uniforme alrededor de un eje Energía cinética de un cuerpo en rotación Movimiento de rotación uniformemente acelerado Péndulo físico o compuesto	162 163 163 164 167 170 173 173 176 176 178

		PÁG.
101	Giróscopo	189
101		192
102	Péndulo de Foucault	194
103	Efectos giroscópicos en la tierra	197
	CAPÍTULO IX.	
	HIDROSTÁTICA	
104	Definición de fluido	201
105	Fuerza y presión	201
106	Unidades de presión	202
107	Presión en un punto de una masa líquida	203
108	Teorema general de la hidrostática	204
109	Superficies de nivel,—Superficie libre	206
110	Presiones sobre el fondo y las paredes de los vasos	206
111	Presión de abajo hacia arriba	207
112 113	Comprobaciones experimentales	208
114	Vasos comunicantes	209
115	Prensa hidráulica	212
116	Trabajo y fuerza	213
117	Principio de Arquímedes	214
118	Demostración del principio de Arquímedes	214
119	Verificación experimental del principio de Arquímedes	214
120	Otra verificación experimental	215
121	Fuerza que actúa sobre el líquido	216
122	Cuerpos flotantes	216
123	Equilibrio de cuerpos flotantes	218
124	Estabilidad y metacentro	218
125	Determinación de pesos específicos y densidades :	219
126	Densímetros y areómetros	221
127	Método del picnómetro o frasco	222
128 129	Tensión superficial	224
130	Tensión y energía superficial	225
131	Capilaridad	226 227
TOT	Capitalitaat	441
	CAPÍTULO X.	
	GALITODO A.	
	HIDRODINÁMICA	
132	Salida de líquidos por orificios.—Teorema de Torricelli	231
133	Gasto o caudal.—Sección contraída	232
134	Comprobación del teorema de Torricelli	233
135	Teorema general de la hidrodinámica	234
136	Aplicación	236
137	Viscosidad	238
138	Acción y reacción en el movimiento de líquidos	239
	CAPÍTULO XI.	
	*	
	GASES - PRESIÓN ATMOSFÉRICA - NEUMOSTÁTICA	
190	Cagos Pose del eine	243
139	Gases.—Peso del aire	243
4.40	Licolon achiesterica. Experiencia de Lutricetti	HID

		PAG.
141	Presión atmosférica normal	245
142	Barometría.—Barómetros de mercurio	246
143		247
144	Barómetros metálicos	248
145		
146	Comprobaciones de la existencia de la presión atmosférica	250
147	Variación de la presión atmosférica con la altura	252
BC 200	Naturaleza de la presión en los gases	253
148	Principio de Arquímedes en gases	253
149	Aeróstatos	254
	CAPÍTULO XII.	
	LEY DE BOYLE-MARIOTTE - BOMBAS - MÁQUINAS	1
		P. Bus
	NEUMÁTICAS	
400	G	957
150	Compresibilidad de los gases.—Ley de Boyle-Mariotte	257
151	Verificación experimental	258
152	Representación gráfica	260
153	Densidad y presión en los gases	261
154	Inexactitud de la ley de Boyle-Mariotte	262
155	Manómetros de aire libre	263
156	Manómetros de aire comprimido	265
157	Manómetro de Mc Leod	265
158	Otros manómetros	266
159	*Bombas hidráulicas a émbolo	267
160	+ Bombas centrifugas	269
161	Sifón	270
162	Bombas neumáticas o bombas de vacío	271
163	Trompa de agua	272
164	4 Máquina neumática a émbolo	272
165	Cálculo de la presión final	273
166	Bomba de mercurio	275
167	Bomba rotativa	275
168	Bombas de alto vacío	276
169	Bombas de compresión	279
100	Dominate de Compression	2.0
	CAPÍTULO XIII.	
	DINÁMICA DE GASES - RESISTENCIA AL MOVIMIENTO	
	EN LOS FLÚIDOS	
170	Topomo conquel de la hidrodinámica aplicado a los coses	901
170	Teorema general de la hidrodinámica aplicado a los gases	
171	Viscosidad en gases	283
172	Resistencia al movimiento en los flúidos	
173	Caída en el aire.—Paracaídas	286
	CAPÍTULO XIV.	
	ELASTICIDAD EN SÓLIDOS, LÍQUIDOS Y GASES	
177.4	Tilesticided de estides	900
174	Elasticidad de sólidos	289
175	Elasticidad por tracción.—Ley de Hooke	289
176	Límite de elasticidad.—Valores de E	291
177	Elasticidad por compresión	292
173	Contracción lateral	292

		Pág.
179	Compresión uniforme	293
180	Deslizamiento	293
181	Flexión	294
182	Torsión	295
183	Elasticidad de los flúidos	296
184	Elasticidad de líquidos	296
185	Elasticidad en gases	291
	CAPÍTULO XV.	
	INTRODUCCIÓN A LA ACÚSTICA - MOVIMIENTO	
	VIBRATORIO - SONIDO Y SUS CARACTERÍSTICAS	
186	Movimiento periódico y movimiento oscilatorio	299
187	Movimiento armónico simple o rectilíneo	301
188	El sonido.—Su naturaleza	302
189	* Características del sonido	303
190	Latour	304
191	Inscripción de vibraciones	306
192	Sonido puro y movimiento armónico	306
193	Movimientos vibratorios compuestos.—Teorema de Fourier	307
194	Composición de movimientos vibratorios	308
	CAPÍTULO XVI.	
	ACÚSTICA	
195	Propagación de ondas	311
196	Ecuación del rayo	313
197	Propagación de una onda cualquiera	315
198	Ondas transversales y longitudinales	316
199	Longitud de onda	318
201	Superposición de ondas.—Ondas estacionarias Propagación del sonido.—Velocidad	319 321
202	* Medida de la velocidad del sonido	325
203	Reflexión del sonido	326
204	Vibraciones del diapasón; tubos, cuerdas y placas	327
205	• Acústica musical	330
206	Grabación del sonidó	332 332
208	Tubo de Kundt	335
209	Medida de la longitud de onda por interferencia	336
210	Efecto Doppler	336
	CAPÍTULO XVII.	
	TERMOMETRÍA	
211	Concepto de temperatura	339
212	Termómetro	341
213	Puntos fijos fundamentales.—Escala centígrada	341
214	Otras escalas termométricas	342
215	Termómetros; diversos tipos	343
216	Verificación de un termómetro	345

CAPÍTULO XVIII.


	DILATACIÓN DE SÓLIDOS Y LÍQUIDOS	Pág.
		-
217	Dilatación de sólidos	347
218	Coeficiente de dilatación lineal	348
219	Binomio de dilatación	348
220	Medida de coeficientes de dilatación lineal	350
221	Aplicaciones de la dilatación lineal	351
222	Fuerzas obtenidas por la dilatación	353
223	Dilatación anómala del caucho	354 355
225	Dilatación cúbica.—Coeficiente Binomio de dilatación	355
226	Relación entre los coeficientes de dilatación lineal y cúbica	356
227	Variación de la densidad con la temperatura	357
228	Dilatación de líquidos	358
229	Dilatación aparente y real de líquidos	358
230	Coeficientes de dilatación	359
231	Dilatación absoluta del mercurio	360
232	Dilatación del agua	362
233	Coeficiente medio y coeficiente de dilatación verdadero	364
	CAPÍTULO XIX.	
	CAPITULO XIX.	
		Jan.
	DILATACIÓN DE GASES - TEMPERATURA ABSOLUTA -X	
	ECUACIÓN DE ESTADO - TERMÓMETRO DE GAS	
234	Dileterión de les mases	
OOF	Dilatación de los gases	367
235	Dilatación a presión constante	367
236	Dilatación a presión constante	367 368
236 237	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes	367 368 368
236 237 238	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante	367 368 368 369
236 237 238 239	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto	367 368 368 369 370
236 237 238 239 240	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto Experiencias de Regnault	367 368 368 369 370 371
236 237 238 239 240 241	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto Experiencias de Regnault Temperatura absoluta	367 368 368 369 370 371 373
236 237 238 239 240 241 242	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales	367 368 368 369 370 371 373 374
236 237 238 239 240 241 242 243	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes	367 368 368 369 370 371 373 374 375
236 237 238 239 240 241 242 243 244	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto ./. Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formas de la ecuación de estado	367 368 368 369 370 371 373 374 375 375
236 237 238 239 240 241 242 243 244 245	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto ./. Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formas de la ecuación de estado Densidad de los gases	367 368 368 369 370 371 373 374 375 375
236 237 238 239 240 241 242 243 244 245 246	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto ./. Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formás de la ecuación de estado Densidad de los gases Termómetro de gas.—Escala	367 368 368 369 370 371 373 374 375 378 380
236 237 238 239 240 241 242 243 244 245	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto ./. Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formas de la ecuación de estado Densidad de los gases	367 368 368 369 370 371 373 374 375 375
236 237 238 239 240 241 242 243 244 245 246	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formas de la ecuación de estado Densidad de los gases Termómetro de gas.—Escala Termómetro de hidrógeno.—Escala normal	367 368 368 369 370 371 373 374 375 378 380
236 237 238 239 240 241 242 243 244 245 246	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto ./. Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formás de la ecuación de estado Densidad de los gases Termómetro de gas.—Escala	367 368 368 369 370 371 373 374 375 378 380
236 237 238 239 240 241 242 243 244 245 246	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formas de la ecuación de estado Densidad de los gases Termómetro de gas.—Escala Termómetro de hidrógeno.—Escala normal	367 368 368 369 370 371 373 374 375 378 380
236 237 238 239 240 241 242 243 244 245 246	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formas de la ecuación de estado Densidad de los gases Termómetro de gas.—Escala Termómetro de hidrógeno.—Escala normal	367 368 368 369 370 371 373 374 375 378 380
236 237 238 239 240 241 242 243 244 245 246 247	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto ./. Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formas de la ecuación de estado Densidad de los gases Termómetro de gas.—Escala Termómetro de hidrógeno.—Escala normal CAPÍTULO XX. CALORIMETRÍA **	367 368 368 369 370 371 373 374 375 375 380 381
236 237 238 239 240 241 242 243 244 245 246 247	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formas de la ecuación de estado Densidad de los gases Termómetro de gas.—Escala Termómetro de hidrógeno.—Escala normal CAPÍTULO XX. CALORIMETRÍA * Cantidad de calor.—Calor específico	367 368 369 370 371 373 374 375 378 380 381
236 237 238 239 240 241 242 243 244 245 246 247	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formas de la ecuación de estado Densidad de los gases Termómetro de gas.—Escala Termómetro de hidrógeno.—Escala normal CAPÍTULO XX. CALORIMETRÍA * Cantidad de calor.—Calor específico Calor específico.—Caloría.—Capacidad calorífica	367 368 368 369 370 371 373 374 375 380 381
236 237 238 239 240 241 242 243 244 245 246 247	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formas de la ecuación de estado Densidad de los gases Termómetro de gas.—Escala Termómetro de hidrógeno.—Escala normal CAPÍTULO XX. CALORIMETRÍA * Cantidad de calor.—Calor específico Calor específico.—Caloría.—Capacidad calorífica Medición de cantidades de calor.—Calorímetro de mezclas	367 368 368 369 370 371 373 374 375 380 381
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250	Dilatación a presión constante Ley de Gay-Lussac Reducción de volúmenes Dilatación a volumen constante Gas ideal o perfecto Experiencias de Regnault Temperatura absoluta Transformaciones y ecuación de estado de los gases ideales Reducción de volúmenes Otras formas de la ecuación de estado Densidad de los gases Termómetro de gas.—Escala Termómetro de hidrógeno.—Escala normal CAPÍTULO XX. CALORIMETRÍA * Cantidad de calor.—Calor específico Calor específico.—Caloría.—Capacidad calorífica	367 368 368 369 370 371 373 374 375 380 381

CAPÍTULO XXI.

	EQUIVALENTE MECÁNICO DEL CALOR -	
	CONSERVACIÓN DE LA ENERGÍA	Pág.
253 254	Equivalente mecánico del calor.—Principio de equivalencia Determinación del equivalente mecánico del calor.—Método	395
255	de Joule	396
256	Teoría mecánica del calor	399
257	Imposibilidad de un móvil perpetuo de primera especie	401
258	Principio de conservación de la energía	401
	CAPÍTULO XXII.	
	PROPAGACIÓN DEL CALOR	
259	Propagación	405
260 261	Conducción	405
262	Radiación	408
	CAPÍTULO XXIII.	
	CAMBIOS DE ESTADO - FUSIÓN - VAPORIZACIÓN -	
No. of the last	HIGROMETRÍA - VOLATILIZACIÓN	
263	Consideraciones generales	411
264	Cuerpos puros	411
265	Concepto de fase.—Equilibrio de fases	411
267	Fusión.—Leyes para presión constante	414
268	Solidificación.—Leyes para presión constante	414
269	Calor de fusión	415
270	Fusión pastosa y fusión franca	416
271 272	Influencia de la presión	419
273	Cambio de volumen en la fusión	419
274	Sobrefusión	420
275	Vaporización.—Vapor saturado.—Tensión de vapor	421
276	Tensión de vapor y temperatura	422
277 278	Leyes de vaporización en el vacío	423
279	Ebullición	424
280	Leyes de la ebullición	425
281	Calor de vaporización	426
282	Determinación del calor de vaporización	427
283 284	Ebullición del agua a diversas temperaturas	428
285	Marmita de Papin	430
286	Estado higrométrico	430
287	Higrómetros de condensación	431
288	Higrómetro de Daniell	432
289	Higrómetro de Alluard	433
290	Higrómetro de cabello	433
ALU A	Toldiomotic	17.00

		PAG.
292 293 294	Sistema sólido-vapor.—Volatilización y sublimación Punto triple Transformaciones alotrópicas y polimorfas	435 436 437
	CAPÍTULO XXIV.	
	CONTINUIDAD DE LOS ESTADOS LÍQUIDO Y GASEOSO - FENÓMENOS CRÍTICOS - VAPORES Y GASES - LIQUEFACCIÓN DE GASES	
295 296 297 298 299	Continuidad de los estados líquido y gaseoso Vapores y gases Liquefacción de gases Hielo seco Máquinas frigoríficas	443 445
	CAPÍTULO XXV.	
300 301 302	DIFUSIÓN - ÓSMOSIS - PRESIÓN OSMÓTICA Difusión Efusión Osmosis.—Presión osmótica	
	CAPÍTULO XXVI.	
	máquinas térmicas	
303 304 305 306 307 308 309 310	Generalidades Máquina de vapor, de simple efecto Máquina de doble efecto Ciclo en la máquina de vapor Indicador de Watt Turbinas de vapor Motor de explosión Motores Diesel BLEMAS A RESOLVER	454 456 457 458 460 461

BIBLIOTECA MACIONAL

BIBLIO UNAL DE MAL TROS

ÍNDICE ALFABÉTICO DE MATERIAS

	PAG.		Pág.
A	440	Cantidad de movimiento	129
		Capacidad calorífica '	387
Acción y reacción, principio de 32,	119	Capilaridad	227
Aceleración	98	Carnot Ciclo de	456 232
—angular	185 167	Caudal	177
—centrípeta	114	Cavendish, aparato de	168
—de la gravedad 107,	163	—bomba	269
—unidades	98	Centripeta, aceleración	167
Acústica musical	330	—fuerza	167
Adiabáticas	456	Centro de gravedad, definición	48
Aeróstatos	254	-determinación	81
Agua, dilatación	362	Centígrada, escala	341
Alotropicas, transformaciones	437	Cinemática	83
Angulo unidades	22	Cinética, energía	145
—sólido, unidades	24 69	Compass de corredera	114
—factorial o en serie	68	—fuerzas concurrentes	36
—potencial	69	—fuerzas paralelas	42
Areómetros	121	-movimientos	111
Armónico, movimiento	170	-velocidades	111
Arquimedes, principio de 214,	215	Compresión de sólidos	292
Atmósfera	244	—uniforme	293
Aviones	285	—líquidos	296
Avogadro, número de	400	—gases	298
B		Conducción del calor	405
B		Conservación de la energía 152, Continuidad de estado	401
Balanza	58	Coriolis, aceleración de	114
—hidrostática	219	Cortamanzanas	251
—de Mohr	221	Convección	407
-sensibilidad	60	Cuerdas, vibración	329
—Roberval	64	Cuerpos	11
romana	63	—apoyados	78
Baricentro 48,	81	—lanzado hacia arriba	109
Báscula	246 -	—puro	411
Bascula Bernouilli, teorema de	64 236	—rígido —suspendidos	83
Berthelot, calorímetro de	427	Cubeta, barómetro de	2.6
Bombas hidráulicas	267	-profunda	21
-de vacio	271	Cuplas	73
Dourdon, parometro de	247	Choque de cuerpos	130
Boyle-Mariotte, lev de	257		
Bunsen, calorimetro de	391	D	
U		Densidad	133
Caída en el vacío	106	—determinación	219
-en aire	286	—gases	378
-en plano inclinado	108	Densidad de la tierra	177 221
Callietet y Pictet, aparato de	443	Descomposición de fuerzas 41,	46
Caloria	387	Deslizamiento, módulo de	293
Calor especifico	392	Dewar, vaso de	445
Calorimetro de Bunsen	391	Dia sideral	87
—de hielo	391	-solar medio	89
—de mezclas	389	—solar verdadero	88

	PÁG.		Teta
			PAG.
Pater of the	447	descomposición	47
Difusión —coeficiente —bombas de Dilatación anómala —de gases —de líquidos 358, —de sólidos 347, Dilatómetro Dina	448	—equilibrio	41
—bombas de	278	—equilibrio	36
Dilatación anómala	354	-paralelas, composición	42
—de gases	367	—paralelas, composición — descomposición	400
—de líquidos 358,	359	representación -vivas, teorema de Funciones trigonométricas Fusión, calor de -leyes -punto de	35
—de sólidos 347,	355	-vivas, teorema de	147
Dilatómetro	358	Funciones trigonométricas	10
Dina Dinámica, objeto	127	Fusión, calor de	415
Dinamica, objeto	117	—leyes	414
—principios de la 117,	120	—punto de	418
Dinamometros	34		
Dinamómetros Doppler, efecto Dulong y Petit, método de	336 360	G	
Dulong y Petit, metodo de	300	Car 12-12	0.00
T		Gas ideal	370 243
E		Gases, peso	442
	424	—y vapores	246
Ebullición	425	Gay-Lussac, barómetro de	368
— leyes Ecuación de estado Efusión de gases 447, Ejes libres Elasticidad — ffúidos	374	Girocompás	194
Ecuación de estado	448	Giróscopo	189
Figs libros	189	Giróscopo Goniómetro	29
Electicidad	289	Gramo fuerza	122
—flúidos	296	—masa	122
Energía 145, —interna 145, —mecánica, conservación —conservación —potencial	144 4	—masa Gravedad, acelevación de la 107, —centro de —fuerza de	163
—cinética 145,	182 /	—centro de	48
—interna	402	-fuerza de	31
-mecánica, conservación	152		110
—conservación	401	—ley de la	176
—potencial	145	77	
	151	H	
Equilibrio de cuerpo —de fuerzas —de cuerpos flotantes Equivalente mecánico del calor 395,	77 36	Heron - Máquina de	453
-de luerzas	218	Hidrodinámica de gases	281
—de cuerpos flotantes	396	-Tenrems conord	224
Escala normal de hidrógeno	381	Hidrostática	201
	342	—teorema general	204
—termométricas	330	Hielo, calorímetro de	391
Escalares, magnitudes	17	Hidrostática —teorema general Hielo, calorímetro de —flores de —seco	438
Esferómetro	30	—seco	445
Esferómetro	395	Higrometría	400
Espacio	11	Higrómetros 431, 432,	433
Estabilidad, coerpos flotantes	218	Hipsómetro Hooke, ley de	429
-cuerpos apoyados	. 80	Hooke, ley de	289
-cuerpos suspendidos	. 77		
Estabilizador giroscópico Estacionarias - Ondas Estado térmico Estática	194	I	
Estacionarias - Ondas	320	Townson to man Assessed	129
Estado termico	339	Impulso de una fuerzaen la rotación	187
Wetown diffe	25	Independencia de acción de las fuer-	101
Esterradián Estratosfera	244	vas principio de	120
***************************************	D-12.12	Inercia, momento de	182
F		—principio de	117
		Inercia, momento de	336
Fase, ángulo de	170	Isotermicas	456
Fases, concepto de	411	Isotónicas, soluciones	450
Fase, angulo de Fases, concepto de —equilibrio Fahrenheit	411		
Fahrenheit	342	J	
Fenomenos	11		000
Fancennent Kenómenos Fi ica, método de la —objeto de la Flexión Flores de hielo Flores de hielo	12	Joule, método de	396
—objeto de la	12 294	—unidad	141
Elexion	438	Jurin, ley de	228
Flotabilidad	216	K	
Fláido	201	A	
Fonógrafo	332	Kater, péndulo de	187
Fortín, barómetro de	246	Keppler, leves	173
Foucault - Péndulo de	194	Kilogramo patrón	33
Flotabilidad Ffúido Fonógrafo Fortín, barómetro de Foucault - Péndulo de Giróscopo Fourier, teorema de Franklin - Hervidor de Fresnel Regla de Frotamiento	190	Keppler, leyes Kilogramo patrón Kundt, método de	335
Fourier, teorema de	307		
Franklin - Hervidor de	422	L L	
Fresnel Regla de	308		46.5
Frotamiento —cono de	153	Lavoisier y Laplace, calorímetro de	391
Tono de disconiente	*155	Leves	122
—por deslizamiento	154 156	—del mov, uniformemente acelerado	103
nerzac	31	—del mov. uniformemente acelerado —de Kepler Ley de gravitación universal	17
—concurrentes, composición	36	Linde aparato de	44

	Pig.		PAG.
			300
Liquefacción de gases	443 309	Oscilatorio, movimiento	449
Lissajous, figuras de	20	Osmosis	
Longitud, unidad de	409	P	
Losas radiantes Ludión	217		53
		Palanca, equilibrio de la —pesada, equilibrio	55
M		Palmer Papin, marmita de	30
265.	266	Papin, marmita de	429
Manómetros	250	Par bimetálico	351 37
Magnitudes escalares y vectoriales	17		287
Magdeburgo, hemisterios de Magnitudes escalares y vectoriales Materia Máquina de vapor, a émbolo —de doble efecto	454	Paracaidas Paradoja aerodinámica —hidrostática	282
Maquina de vapor, a carolio	455	—hidrostática	207 137
—de doble electo	446 453	Parábolas de tiro Pascal, principio de Péndulo, compensador —ideal 159	211
—térmicas	176	Péndulo, compensador	352
Masa de la Herra	133	—ideal	173
—cálculo	120 119	—físico	*
-concepto de	118	-de Foucault	. 194
—frigorifica —frimicas Masa de la tierra Masa- específica —cálculo —concepto de —principio de —unidades	121 265	—de Mach	. 162
Mc. Leod, manómetro de	218	—doble de Oberbeck	187
—principio de —unidades Mc. Leod, manómetro de Metacentro Metro, patrón Micrométrico, tornillo Módulo de elasticidad	19	Período en el péndulo	. 159
Micrométrico, tornillo	29	Pesacartas	. 63
Módulo de elasticidad	221	Peso	122
Modulo de etashenda Mohr, balanza de Molino Moléculas Momento de estabilidad	286	Peso específico 33 —determinación —unidad de Picnómetro	. 219
Moléculas	14	—unidad de	. 32
Momento de estabilidad	182	Pienómetro	. 222
—de inercia	51	Pipeta	
—de una fuerza —teorema de los	52 193	Planetas, movimiento	. 178
Monoriel		Planetas, movimiento	1, 153
		Plomada	. 0
_armónico 110,	301	Poisson, módulo de	66
—circular uniforme	106	-móvil	. 66
		—combinaciones de	. 03
—de un punto	105	Polimorfas, transformaciones	The state of the s
		Potencial, energía	. 140
-uniformemente acelerado, espaci-	100	Pozo artesiano	200
— — — gráficos		Precesión terrestre	2. 218
leyes	. 99	Presión	
	95	Presión —atmosférica —normal	248
— — variado	. 461	—normal	442
—de explosión	. 460	eritica —hacia arriba	207
И		—hidrodinámica 23 —osmótica	* *
Newton - Tubo de	. 107	unidades	202
—Ley de gravitación	322	Principio de acción y reacción	32, 119 14, 258
		—de Arquímedes 2 —conserv. de la energía 1	52, 401
Nivel de agua —superficies de Nivelación barométrica	209	-independencia de acción de	14B
—superficies de	252	fuorzac	The second second
Nonius Nutación	. 25	—de equivalencia	117
Nutación	. 199	—de masa 1 —superpos. de mov 1	18, 123
0			
		Propagación del calor Precesión giroscópica	405
Ondas esféricas	312	Precesión giroscópica	191
estacionarias	320	Pulsación	341
		Pulsación Puntos fijos Punto triple Punto triple	486
—planas —propagación —transversales	312	Psicrómetro	484
-propagacion	316		1
Velocidad	321	Q	3-3
Oscilación, amplitud de	101		336
—simple y doble			17 3/2
			A STATE OF THE PARTY OF THE PAR

	Pág.		Pág.
	12000		3000
R		Torsión, módulo	295
		Trabajo mecánico	139
Radián	22	-virtual, principio	144
Radiación	408	Tracción	289
Rayo, ecuación del	313	Traslación	85
Reacción, principio	342	Triedro de referencia	84
Réaumur	13	Troposfera	244
Regnault, experiencias de	371	Tubos sonoros	327
Rehielo	419	Turbinas hidráulicas	240
Rendimiento, máquinas	453	—a vapor	458
Resonadores	334	Tyndall, aparato de	353
Resonancia	333		
Resultante de fuerzas	36	U	
Rodadura, frotamiento	156		
Kompevejigas	251	Unidades (ver nombre de cada una)	THE .
Rotación	86	Unidades antiguas	21
—uniforme	179	—inglesas	22
S		—sistemas de	126
B		V	
Savart, ruedas de	304	The strong of the later of the	
Sección contraída	232	Vacío	271
Semipermeables, membranas	447	Van der Waals - Ecuación	441
Sideral, día	88	Van't Hoff	450
Sifón	270	Vapor saturado	421
Sirena de Cagniard de Latour	305	Vapores y gases	442
Sistemas de unidades	126	Vaporización	421
Solar, día	87	-calor de	426
Solidificación, leyes	414	—leyes	423
Sobrefusión	420 303	Varignon, aparato de	37
Sonido, características	302	—teorema de	52
—naturaleza	306	Vasos comunicantes	209
—puro—reflexión del	326	Vector, componentes	18
—velocidad	325	Vectoriales, magnitudes	18
Steiner regla de	183	Velocidad angular	180
Steiner, regla de	284	—de arrastre	111
Submarino	217	—definición	90
Sublimación	435	—instantánea	96-
Superficie, unidades de	20	—media	95
Superposición de movimientos	112	—relativa	111
7	4	-representac. gráfica 99,	92
T		—unidad	91
_	339	—vectorial	25
Temperatura	442	—circular	28
—erítica	373	Vertical 31,	169
—absoluta 224, 225, Tensión superficial 224, 225,	226	Vertical, desviación	169
—de vapor 421,	422	Vibraciones	300
Teodolito	29	—composición	308
Teoría mecánica del calor	399	Vidi, barometro de	248
Termodinámica - Principios	401	Viscosidad	238
Termómetro 341.	343	—de gases	283
—de gas	380	Volatilización	435
Tiempo	11	Volumen crítico	442
—de oscilación, péndulo	161 87	unidades de	21
—unidad de medida	135	W	
Tiro en el vacío	243		
—teorema de	231	Watt	151
Tornillo micrométrico	29	-Principio de	424
Torno	70	—Indicador de	457

BIBLIOTECA NACIONAL DE MAESTROS

> mr. 50341 4/6/86

INDICE DE TABLAS

		Pág.
		-
I.	Funciones trigonométricas	9
II.	Unidades antiguas y sus equivalencias	21
III.	Medidas inglesas	22
IV.	Funciones trigonométricas de ángulos pequeños	23
V.	Velocidades en metros por segundo	94
VI.	Unidades de trabajo	152
VII.	Unidades de potencia	152
VIII.	Coeficientes de rozamiento	156
IX.	Coeficientes de viscosidad	239
X.	Corrección de temperatura para lecturas barométricas	248
XI.	Corrección de capilaridad	249
XII.	Valores de E	292
XIII.	Coeficientes medios de dilatación lineal	351
XIV.	Densidad y volumen específico del agua en función de la	
	temperatura	363
XV.	Dilatación lineal de sólidos	365
XVI.	Dilatación de líquidos	
XVII.	Densidad relativa de gases	
XVIII.	Comparación de escalas termométricas	
XIX.	Calores específicos del agua a diversas temperaturas	
XX.	Calores específicos	
XXI.	Temperaturas y calores de fusión	
XXII.	Presiones y puntos de fusión	
XXIII.	Variación del volumen en la fusión	
XXIV.	Tensión de vapor de agua saturado	
XXV.	Temperaturas de ebullición	
XXVI.	Tensión de vapor de agua saturado	
XVIII.	Tabla para psicrómetro	
AVIII.	Constantes de algunos gases	445

ÍNDICE DE LÁMINAS

		entre pags.
I.	Metro patrón - Delambre - Mechain	16 - 17
II.	Comparador de reglas geodésicas	32 - 33
III.	Galileo	112 - 113
IV.	Newton	128 - 129
V.	Blas Pascal	224 - 225
VI.	Experiencia histórica de los hemisferios de Magdeburgo	256 - 257
VII.	Sadi Carnot-Joule	
VIII.	Aplicación de los motores térmicos	464 - 465

